留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯涂层对直升机旋翼防/除冰组件传热的影响

陈龙 刘慧 张一术

陈龙, 刘慧, 张一术. 石墨烯涂层对直升机旋翼防/除冰组件传热的影响[J]. 复合材料学报, 2021, 38(1): 239-245. doi: 10.13801/j.cnki.fhclxb.20200513.001
引用本文: 陈龙, 刘慧, 张一术. 石墨烯涂层对直升机旋翼防/除冰组件传热的影响[J]. 复合材料学报, 2021, 38(1): 239-245. doi: 10.13801/j.cnki.fhclxb.20200513.001
CHEN Long, LIU Hui, ZHANG Yishu. Effect of graphene coating on heat transfer of anti-/deicing component for helicopter rotor[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 239-245. doi: 10.13801/j.cnki.fhclxb.20200513.001
Citation: CHEN Long, LIU Hui, ZHANG Yishu. Effect of graphene coating on heat transfer of anti-/deicing component for helicopter rotor[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 239-245. doi: 10.13801/j.cnki.fhclxb.20200513.001

石墨烯涂层对直升机旋翼防/除冰组件传热的影响

doi: 10.13801/j.cnki.fhclxb.20200513.001
基金项目: “十三五”装备预研领域基金(61402060404);山东省自然科学基金(ZR2019BEE068);机械系统与振动国家重点实验室开放课题资助项目(MSV-2019-13);山东大学基本科研业务费资助项目(2018GN034)
详细信息
    通讯作者:

    陈龙,博士,讲师,硕士生导师,研究方向为石墨烯掺杂及复合材料设计 E-mail:812612937@qq.com

  • 中图分类号: TB331

Effect of graphene coating on heat transfer of anti-/deicing component for helicopter rotor

  • 摘要: 采用水性和油性石墨烯涂层对复合材料防/除冰组件进行测温及防/除冰实验。针对直升机旋翼对结冰的敏感等特点,提出了旋翼防/除冰组件包铁表面涂覆石墨烯涂层改性传热性能的方法,从而提高旋翼防/除冰组件除冰效率。为验证石墨烯涂层对防/除冰组件传热效率具有显著的提高作用,采用搭建的除冰实验平台并对涂覆的旋翼防/除冰组件进行传热实验及除冰实验。结果表明,石墨烯涂层对提高防/除冰组件的传热性能具有显著作用。同时,采用油性石墨烯涂层和水性石墨烯涂层分别进行传热测试,研究表明油性石墨烯涂层升温速率高于水性石墨烯涂层,且油性石墨烯涂层平均传热速率为0.021℃/s,瞬时最大传热速率为0.083℃/s,均高于水性石墨烯涂层,说明油性石墨烯涂层的防/除冰效果优于水性石墨烯。最后,通过改变喷涂工艺控制石墨烯涂层厚度进行研究,研究发现随着石墨烯涂层厚度的增加,涂层的导热系数逐渐减小,该实验结果验证了Balandin等推导的热导率公式中石墨烯热导率与片层厚度之间的反比例关系。

     

  • 图  1  复合材料防/除冰组件结构示意图

    Figure  1.  Structure diagram of composite anti-/deicing component

    图  2  石墨烯涂覆试样

    Figure  2.  Sample of graphene coating

    图  3  防/除冰实验装置

    Figure  3.  Diagrammatic of anti-/deicing experimental apparatus

    图  4  油性石墨烯涂层基体(a)和其石墨烯片层(b)及水性石墨烯涂层基体(c)和其石墨烯片层(d)的SEM图像

    Figure  4.  SEM images of oil-based graphene coating substrate (a) with graphene sheets (b) and water-based graphene coating substrate (c) with graphene sheets (d)

    图  5  旋翼防/除冰组件无石墨烯涂层与有石墨烯涂层的传热效果对比

    Figure  5.  Comparison of heat transfer effect of rotor anti-/deicing component with and without graphene coating

    U—Heating voltage; t—Heating time

    图  6  水性石墨烯涂层和油性石墨烯涂层传热温度随时间的变化

    Figure  6.  Heat transfer temperature of water-based graphene coating and oil-based graphene coating with time

    图  7  不同涂层厚度的油性石墨烯涂层的传热最高温度

    Figure  7.  Maximum heat transfer temperature of oil-based graphene coating with different coating thicknesses

    表  1  不同石墨烯涂层的除冰时间和除冰效率

    Table  1.   Deicing time and deicing efficiency of different graphene coatings

    TestDeicing time/s
    (No coating)
    Deicing time/s
    (Water-based graphene)
    Deicing efficiency/%
    (Water-based graphene)
    Deicing time/s
    (Oil-based graphene)
    Deicing efficiency/%
    (Oil-based graphene)
    117612528.97↑8352.84↑
    218513725.94↑9250.27↑
    317111930.40↑7854.36↑
    下载: 导出CSV
  • [1] PISCITELLI F, CHIARIELLO A, DABKOWSKI D, et al. Superhydrophobic coatings as anti-icing systems for small aircraft[J]. Aerospace,2020,7(1):2. doi: 10.3390/aerospace7010002
    [2] DEKONINCK L H, AHMADI S F, BOREYKO J B. Passive anti-frosting cables[J]. International Journal of Heat and Mass Transfer,2020,146:118808. doi: 10.1016/j.ijheatmasstransfer.2019.118808
    [3] QI Y, YANG Z, CHEN T, et al. Fabrication of superhydrophobic surface with desirable anti-icing performance based on micro/nano-structures and organosilane groups[J]. Applied Surface Science,2020,501:144165. doi: 10.1016/j.apsusc.2019.144165
    [4] 杨常卫, 胡和平, 马艳玲, 等. 直升机旋翼桨叶防/除冰技术新思路[J]. 直升机技术, 2009(3):47-51. doi: 10.3969/j.issn.1673-1220.2009.03.009

    YANG C W, HU H P, MA Y L, et al. A new idea on anti-icing and de-icing of helicopter rotor blade[J]. Helicopter Technique,2009(3):47-51(in Chinese). doi: 10.3969/j.issn.1673-1220.2009.03.009
    [5] 曹普孙, 张威, 胡偶. 基于CCAR-29附录C的旋翼结冰特性研究[J]. 直升机技术, 2019(3):1-4, 9. doi: 10.3969/j.issn.1673-1220.2019.03.001

    CAO P S, ZHANG W, HU O. Research for rotor icing property based on CCAR-29 appendix C[J]. Helicopter Technology,2019(3):1-4, 9(in Chinese). doi: 10.3969/j.issn.1673-1220.2019.03.001
    [6] OVERMEYER A, PALACIOS J, SMITH E. Ultrasonic de-icing bondline design and rotor ice testing[J]. AIAA Journal,2013,51(12):2965-2976. doi: 10.2514/1.J052601
    [7] THOMAS S K, CASSONI R P, MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft,1996,33(5):841-854.
    [8] 蔺瑞, 颜正国, 刘涛, 等. 60 t钢包浇注过程中汇流旋涡形成机理[J]. 过程工程学报, 2010, 10(4):655-659.

    LIN R, YAN Z G, LIU T, et al. Modeling formation mechanism of vortex during steel casting in a 60 t ladle[J]. The Chinese Journal of Process Engineering,2010,10(4):655-659(in Chinese).
    [9] WROBLEWSKI G, KIELBASINSKI K, SWATOWSKA B, et al. Carbon nanomaterials dedicated to heating systems[J]. Circuit World,2015,41(3):102-106. doi: 10.1108/CW-05-2015-0021
    [10] PROLONGO S G, MORICHE R, ROSARIO G D, et al. Joule effect self-heating of epoxy composites reinforced with graphitic nanofillers[J]. Journal of Polymer Research,2016,23(9):189. doi: 10.1007/s10965-016-1092-4
    [11] RAJI A R O, VARADHACHARY T, NAN K, et al. Composites of graphene nanoribbon stacks and epoxy for joule heating and deicing of surfaces[J]. ACS Applied Materials & Interfaces,2016,8(5):3551-3559.
    [12] WANG T, ZHENG Y, RAJI A R O, et al. Passive anti-icing and active deicing films[J]. ACS Applied Materials & Interfaces,2016,8(22):14169-14173.
    [13] 秦红梅, 邓超然, 李明专, 等. 石墨烯纳米薄片-SiO2/天然橡胶复合材料的导电导热性能[J]. 复合材料学报, 2019, 36(11):2683-2691.

    QIN H M, DENG C R, LI M Z, et al. Electrical and thermal properties of nano graphene sheets-SiO2/natural rubber composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2683-2691(in Chinese).
    [14] 周宏, 朴明昕, 李芹, 等. 氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1309-1315.

    ZHOU H, PIAO M X, LI Q, et al. Preparation and properties of graphene oxide nanosheeets/epoxy composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1309-1315(in Chinese).
    [15] ZHOU W, MAO L, HU X, et al. An optimized graphene oxide self-assembly surface for significantly enhanced boiling heat transfer[J]. Carbon,2019,150:168-178. doi: 10.1016/j.carbon.2019.04.119
    [16] PRAVEEN B, SURESH S, PETHURAJAN V. Heat transfer performance of graphene nano-platelets laden micro-encapsulated PCM with polymer shell for thermal energy storage based heat sink[J]. Applied Thermal Engineering,2019,156:237-249. doi: 10.1016/j.applthermaleng.2019.04.072
    [17] ZHOU Y, CUI X, WENG J, et al. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids[J]. Powder Technology,2018,332:371-380. doi: 10.1016/j.powtec.2018.02.048
    [18] NADDAF A, HERIS S Z, POULADI B. An experimental study on heat transfer performance and pressure drop of nanofluids using graphene and multi-walled carbon nanotubes based on diesel oil[J]. Powder Technology,2019,352:369-380. doi: 10.1016/j.powtec.2019.04.078
    [19] 秦国锋, 张婧婧, 徐子威, 等. BN纤维对石墨烯微片/聚丙烯复合材料导热绝缘性能的影响[J]. 复合材料学报, 2020, 37(3):546-552.

    QIN G F, ZHANG J J, XU Z W, et al. Effect of BN fiber on thermal conductivity and insulation properties of graphene nanoplatelets/polypropylene composites[J]. Acta Materiae Compositae Sinica,2020,37(3):546-552(in Chinese).
    [20] ZHANG Q, YU Y, YANG K, et al. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers[J]. Carbon,2017,124:296-307. doi: 10.1016/j.carbon.2017.09.001
    [21] ZANJANI J S M, OKAN B S, MENCELOGLU Y Z, et al. Nano-engineered design and manufacturing of high-performance epoxy matrix composites with carbon fiber/selectively integrated graphene as multi-scale reinforcements[J]. RCS Advances,2016,6(12):9495-9506.
    [22] ZANJANI J S M, OKAN B S, PAPPAS P N, et al. Tailoring viscoelastic response, self-heating and deicing properties of carbon-fiber reinforced epoxy composites by graphene modification[J]. Composites Part A: Applied Science and Manufacturing,2018,106:1-10. doi: 10.1016/j.compositesa.2017.12.008
    [23] LIU Y, LI Y, YANG Y, et al. Preparation and properties of graphene oxide–carbon fiber/phenolic resin composites[J]. Carbon,2013,52:624.
    [24] KONG Q Q, LIU Z, GAO J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials,2014,24(27):4222-4228. doi: 10.1002/adfm.201304144
    [25] CHEN L, ZHANG Y, WU Q. Heat transfer optimization and experimental validation of anti-icing component for helicopter rotor[J]. Applied Thermal Engineering,2017,127:662-670. doi: 10.1016/j.applthermaleng.2017.07.169
    [26] CHEN L, ZHANG Y, WU Q, et al. Numerical simulation and optimization analysis of anti-/de-icing component of helicopter rotor based on big data analytics[M]//ZHANG L, SONG X, WU Y. Theory, methodology, tools and applications for modeling and simulation of complex systems. Singapore: Springer, 2016.
    [27] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1259
  • HTML全文浏览量:  468
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 录用日期:  2020-05-01
  • 网络出版日期:  2020-05-14
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回