留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杨木纤维/聚乙烯复合材料拉伸性能微观力学模型

孙宏雨 吕兴聪 郭垂根 王清文 袁纳新 孙理超

孙宏雨, 吕兴聪, 郭垂根, 等. 杨木纤维/聚乙烯复合材料拉伸性能微观力学模型[J]. 复合材料学报, 2021, 38(1): 155-164. doi: 10.13801/j.cnki.fhclxb.20200511.002
引用本文: 孙宏雨, 吕兴聪, 郭垂根, 等. 杨木纤维/聚乙烯复合材料拉伸性能微观力学模型[J]. 复合材料学报, 2021, 38(1): 155-164. doi: 10.13801/j.cnki.fhclxb.20200511.002
SUN Hongyu, LV Xingcong, GUO Chuigen, et al. Micromechanical model of tensile properties of poplar fiber/polyethylene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 155-164. doi: 10.13801/j.cnki.fhclxb.20200511.002
Citation: SUN Hongyu, LV Xingcong, GUO Chuigen, et al. Micromechanical model of tensile properties of poplar fiber/polyethylene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 155-164. doi: 10.13801/j.cnki.fhclxb.20200511.002

杨木纤维/聚乙烯复合材料拉伸性能微观力学模型

doi: 10.13801/j.cnki.fhclxb.20200511.002
基金项目: 国家自然科学基金(31700494;31870547);生物质材料科学与技术教育部重点实验室(东北林业大学)开放基金(SWZ-ZD201905);国家重点研发计划课题(2019YFD1101203);广州市重点实验室项目(201905010005)
详细信息
    通讯作者:

    袁纳新,博士,副教授,硕士生导师,研究方向为功能化木塑复合材料 E-mail:nxyuanun@scau.edu.cn

    孙理超,博士,副教授,硕士生导师,研究方向为生物质复合材料等 E-mail:sunlichao@scau.edu.cn

  • 中图分类号: TB332

Micromechanical model of tensile properties of poplar fiber/polyethylene composite

  • 摘要: 制备了不同杨木纤维含量的杨木纤维/聚乙烯复合材料,利用Hirsch模型、Kelly-Tyson模型和Bowyer-Bader模型对杨木纤维/聚乙烯复合材料的微观力学进行建模,通过对杨木纤维/聚乙烯复合材料及塑料基体的拉伸应力-应变曲线和杨木纤维长度分布的研究,计算得到杨木纤维在聚乙烯基体中的取向系数、界面剪切强度和本征抗拉强度,解释了杨木纤维/聚乙烯复合材料拉伸性能的变化规律。此外,利用微观力学模型计算得到了亚临界纤维、超临界纤维、塑料基体对杨木纤维/聚乙烯复合材料拉伸强度的贡献比例。

     

  • 图  1  纤维轴向与受力方向关系示意图

    Figure  1.  Schematic diagram of relationship between axial direction and load force of fiber

    图  2  挤出方向和拉伸受力示意图

    Figure  2.  Schematic diagram of extrusion direction and tensile load direction

    图  3  杨木纤维的分布SEM图像

    Figure  3.  Distribution SEM image of poplar fibers

    图  4  杨木纤维长度统计

    Figure  4.  Length statistical chart of poplar fibers

    图  5  通过应力-应变曲线确定相关参数示意图

    Figure  5.  Schematic diagram of determining relevant parameters by stress-strain curves

    图  6  Hirsch模型示意图

    Figure  6.  Schematic diagram of Hirsch model

    图  7  纤维取向角度的SEM图像: (a)壳层; (b)芯层; 挤出方向为自左向右

    Figure  7.  SEM images of fiber orientation angle: (a) Shell; (b) Core; Extrusion direction from left to right

    图  8  纤维取向角度统计

    Figure  8.  Statistical diagram of fiber orientation angle ((a) Shell; (b) Core)

    图  9  杨木纤维/聚乙烯复合材料的拉伸模量和拉伸强度

    Figure  9.  Tensile modulus and tensile strength of poplar fiber/polyethylene composites

    图  10  杨木纤维/聚乙烯复合材料拉伸性能理想趋势

    Figure  10.  Ideal trend of tensile properties of poplar fiber/polyethylene composites

    图  11  纤维及塑料基体对杨木纤维/聚乙烯复合材料强度的贡献比例

    Figure  11.  Proportion of contribution of fiber and matrix to strength of poplar fiber/polyethylene composites

    图  12  不同杨木纤维含量的杨木纤维/聚乙烯复合材料断面的SEM图像

    Figure  12.  SEM images of cross-section of poplar fiber/polyethylene composites with different poplar fiber contents ((a) 20wt%; (b) 30wt%; (c) 40wt%; (d) 50wt%; (e) 60wt%)

    表  1  杨木纤维/聚乙烯复合材料的配方

    Table  1.   Formulation of poplar fiber/ polyethylene composites

    GroupPoplar fiber/
    wt%
    HDPE/
    wt%
    MAPE/
    wt%
    Lubricant/
    wt%
    PF/PE0 0 100 0 0
    PF/PE20 20 75 3 2
    PF/PE30 30 65 3 2
    PF/PE40 40 55 3 2
    PF/PE50 50 45 3 2
    PF/PE60 60 35 3 2
    Notes: PF—Poplar fiber; PE—Polyethylene; HDPE—High-density polyethylene; MAPE—Maleic anhydride grafted polyethylene.
    下载: 导出CSV

    表  2  杨木纤维的平均长度、直径和长径比

    Table  2.   Average length, diameter and aspect ratio of poplar fibers

    Average length/μmAverage diameter/μmAverage aspect ratio
    290.35 (314.89) 50.00 (10.24) 5.807
    Note: Figures in parentheses represent standard deviations.
    下载: 导出CSV

    表  3  杨木纤维/聚乙烯复合材料的杨木纤维体积分数(Vf)

    Table  3.   Volume fraction of poplar fiber in poplar fiber/polyethylene composites (Vf)

    GroupPF/PE0PF/PE20PF/PE30PF/PE40PF/PE50PF/PE60
    ${V_{\rm{f}}}$/vol% 0 15.4 23.8 32.8 42.2 52.3
    下载: 导出CSV

    表  4  杨木纤维/聚乙烯复合材料在应变水平1和2(${\varepsilon _1}$${\varepsilon _2}$)时的参数

    Table  4.   Parameters of poplar fiber/polyethylene composites at strain level 1 and 2 (${\varepsilon _1}$ and ${\varepsilon _2}$)

    SamplePF/PE20PF/PE30PF/PE40PF/PE50PF/PE60
    ${\varepsilon _1}$/% 0.5 0.75 0.35 0.35 0.3
    ${\sigma _{{{\rm{c}}_1}}}$/MPa 10.5 15.1 11.8 13.1 13.5
    ${\sigma _{{{\rm{m}}_1}}}$/MPa 5.01 7.02 3.5 3.5 3.25
    ${L_{{\varepsilon _1}}}$/μm 472.7 189.1 264.7 220.6 270.1
    ${\varepsilon _2}$/% 1.0 1.5 0.7 0.7 0.6
    ${\sigma _{{{\rm{c}}_2}}}$/MPa 15.4 20.2 18.2 20.75 20.75
    ${\sigma _{{{\rm{m}}_2}}}$/MPa 8.7 10.89 6.47 6.47 5.68
    ${L_{{\varepsilon _2}}}$/μm 945.4 378.2 529.4 441.2 540.2
    Notes: $\varepsilon $—Strain; ${\sigma _{{{\rm{c}}_{}}}}$—Stress of poplar fiber/polyethylene composites; ${\sigma _{{{\rm{m}}_{}}}}$—Stress of polyethylene; ${L_\varepsilon }$—Critical fiber length; Subscripts 1, 2—Two strain levels.
    下载: 导出CSV

    表  5  杨木纤维/聚乙烯复合材料参数的计算结果

    Table  5.   Calculation results of parameters of poplar fiber/polyethylene composites

    SamplePF/PE20PF/PE30PF/PE40PF/PE50PF/PE60
    $\tau $/MPa 4.13 5.07 5.19 6.11 4.56
    $K$ 0.940 0.665 0.730 0.621 0.718
    ${\sigma _{\rm{f}}}$/MPa 80 80 100 135 75
    Notes: $\tau $—Interfacial shear strength of poplar fibers and plastics; $K$—Spatial orientation coefficient of poplar fibers; ${\sigma _{\rm{f}}}$—Intrinsic tensile strength of poplar fibers.
    下载: 导出CSV
  • [1] IBRAHIM H, MEHANNY S, DARWISH L, et al. A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosic fibers[J]. Journal of Polymers and the Environment, 2018, 26(6): 2434-2447.
    [2] 王瑞, 王春红. 亚麻落麻纤维增强可降解复合材料的拉伸强度预测[J]. 复合材料学报, 2009, 26(1):43-47. doi: 10.3321/j.issn:1000-3851.2009.01.008

    WANG Rui, WANG Chunhong. Prediction of tensile strength of flax noil fibers reinforced biodegradable composite[J]. Acta Materiae Compositae Sinica,2009,26(1):43-47(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.008
    [3] DELGADO-AGUILAR M, REIXACH R, TARRÉS Q, et al. Bleached kraft eucalyptus fibers as reinforcement of poly(lactic acid) for the development of high-performance biocomposites[J]. Polymers, 2018, 10(7): 699.
    [4] PHUA Y J, PEGORETTI A, MOHD ISHAK Z A. Experimental analysis and theoretical modeling of the mechanical behavior of starch-grafted-polypropylene/kenaf fibers composites[J]. Polymer Composites, 2018, 39(9): 3289-3299.
    [5] 栗越, 张京发, 易顺民, 等. 改性芳纶纤维增强木粉/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2019, 36(3):638-645.

    LI Yue, ZHANG Jingfa, YI Shunmin, et al. Mechanical properties of modified aramid fiber reinforced wood flour/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2019,36(3):638-645(in Chinese).
    [6] 朱碧华, 何春霞, 石峰, 等. 三种壳类植物纤维/聚氯乙烯复合材料性能比较[J]. 复合材料学报, 2017, 34(2):291-297.

    ZHU Bihua, HE Chunxia, SHI Feng, et al. Performance comparison of three kinds of husk’s fibers/polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica,2017,34(2):291-297(in Chinese).
    [7] 曹岩. 纤维尺寸及分布对WPCs力学性能的影响[D]. 哈尔滨: 东北林业大学, 2013.

    CAO Yan. Effect of fiber size and distribution on the mechanical properties of WPCs[D]. Harbin: Northeast Forestry University, 2013(in Chinese).
    [8] HALPIN J C, TSAI S W. Environmental factors in composite materials design: Technical Report AFML-TR[R]. United State Air Force Materials Laboratory, 1969.
    [9] KALAPRASAD G, JOSEPH K, THOMAS S, et al. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites[J]. Journal of Materials Science, 1997, 32(16): 4261-4267.
    [10] HASSANZADEH-AGHDAM M K, JAMALI J. A new form of a Halpin-Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites[J]. Bulletin of Materials Science, 2019, 42(3): 117.
    [11] CLIFFORD M J, WAN T. Fibre reinforced nanocomposites: Mechanical properties of PA6/clay and glass fibre/PA6/clay nanocomposites[J]. Polymer, 2010, 51(2): 535-539.
    [12] COX H L. The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics,1952,3(3):72-79.
    [13] MIGNEAULT S, KOUBAA A, ERCHIQUI F, et al. Application of micromechanical models to tensile properties of wood-plastic composites[J]. Wood Science and Technology, 2011, 45(3): 521-532.
    [14] GUN H, KOSE G. Prediction of longitudinal modulus of aligned discontinuous fiber-reinforced composites using boundary element method[J]. Science and Engineering of Composite Materials, 2014, 21(2): 219-221.
    [15] KELLY A, TYSON W R. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(6): 329-338.
    [16] LI Y, PICKERING K L, FARRELL R L. Determination of interfacial shear strength of white rot fungi treated hemp fibre reinforced polypropylene[J]. Composites Science and Technology, 2009, 69(7-8): 1165-1171.
    [17] SERRANO A, ESPINACH F X, JULIAN F, et al. Estimation of the interfacial shears strength, orientation factor and mean equivalent intrinsic tensile strength in old newspaper fiber/polypropylene composites[J]. Composites Part B: Engineering, 2013, 50: 232-238.
    [18] YAN X, YANG Y, HAMADA H. Tensile properties of glass fiber reinforced polypropylene composite and its carbon fiber hybrid composite fabricated by direct fiber feeding injection molding process[J]. Polymer Composites, 2018, 39(10): 3564-3574.
    [19] LAW T T, PHUA Y J, SENAWI R, et al. Experimental analysis and theoretical modeling of the mechanical behavior of short glass fiber and short carbon fiber reinforced polycarbonate hybrid composites[J]. Polymer Composites, 2016, 37(4): 1238-1248.
    [20] ASTM International. Standard test method for tensile properties of plastics: ASTM D638—14[S]. West Conshohocken: ASTM International, 2014.
    [21] VALLEJOS M E, ESPINACH F X, JULIÁN F, et al. Micromechanics of hemp strands in polypropylene composites[J]. Composites Science and Technology, 2012, 72(10): 1209-1213.
    [22] ESPINACH F X, JULIAN F, VERDAGUER N, et al. Analysis of tensile and flexural modulus in hemp strands/polypropylene composites[J]. Composites Part B: Engineering, 2013, 47: 339-343.
    [23] LÓPEZ J P, BOUFI S, MANSOURI N E E, et al. PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study[J]. Composites Part B: Engineering, 2012, 43(8): 3453-3461.
    [24] YAN X, CAO S. Structure and interfacial shear strength of polypropylene-glass fiber/carbon fiber hybrid composites fabricated by direct fiber feeding injection molding[J]. Composite Structures, 2018, 185: 362-372.
    [25] BOWYER W H, BADER H G. On the reinforcement of thermoplastics by imperfectly aligned discontinuous fibres[J]. Materials. Science, 1972, 4(3): 1315-1321.
    [26] HIRSCH T. Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate[J]. American Concrete Institute. 1962, 59(1): 154-427.
    [27] SERRANO A, ESPINACH F X, TRESSERRAS J, et al. Macro and micromechanics analysis of short fiber composites stiffness: The case of old newspaper fibers-polypropylene composites[J]. Materials & Design, 2014, 55: 319-324.
    [28] OLIVER-ORTEGA H, CHAMORRO-TRENADO M À, SOLER J, et al. Macro and micromechanical preliminary assessment of the tensile strength of particulate rapeseed sawdust reinforced polypropylene copolymer biocomposites for its use as building material[J]. Construction and Building Materials, 2018, 168: 422-430.
    [29] ZHANG Y, ZHANG S Y, CHOI P. Effects of wood fiber content and coupling agent content on tensile properties of wood fiber polyethylene composites[J]. Holz als Roh- und Werkstoff, 2008, 66(4): 267-274.
    [30] EL-SHEKEIL Y A, SAPUAN S M, ABDAN K, et al. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites[J]. Materials & Design, 2012, 40: 299-303.
    [31] VENKATESHWARAN N, ELAYAPERUMAL A, JAGATHEESHWARAN M S. Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite[J]. Journal of Reinforced Plastics and Composites, 2011, 30(19): 1621-1627.
    [32] 宋丽贤, 张平, 姚妮娜, 等. 木粉粒径和填量对木塑复合材料力学性能影响研究[J]. 功能材料, 2013, 44(17): 2451-2454.

    SONG Lixian, ZHANG Ping, YAO Nina, et al. Study on effect of particle diameter and filling quantity of wood flour on mechanical properties of wood-plastics composite[J]. Journal of Functional Materials, 2013, 44(17): 2451-2454(in Chinese).
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1399
  • HTML全文浏览量:  445
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 录用日期:  2020-05-01
  • 网络出版日期:  2020-05-11
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回