Experimental study on shear behavior of steel fiber-rubber/concrete
-
摘要: 抗剪强度和剪切韧性是反映构件在复合受力状态下承载能力及耗能能力的重要指标。为研究钢纤维(SF)-橡胶/混凝土的剪切性能,设计了14组SF-橡胶/混凝土试件,通过双面剪切试验,研究了SF体积分数掺量、橡胶掺量和水胶比对SF-橡胶/混凝土试件的抗剪性能及剪切破坏形态的影响。研究表明:SF的桥联作用及其与橡胶颗粒的协同作用可显著改善混凝土的抗剪性能。SF对SF-橡胶/混凝土试件的抗剪性能起主导作用,SF-橡胶/混凝土试件的抗剪强度、峰值变形及剪切韧性相比普通混凝土及橡胶/混凝土试件均显著提高,且增幅随SF掺量的增加而增大,剪切破坏呈现出明显的延性特征。当SF体积分数为1.5vol%时,橡胶掺量(等体积取代砂取代率)为10%的SF-橡胶/混凝土试件的抗剪强度、峰值变形相比橡胶/混凝土分别提高了78%、63%。橡胶对SF-橡胶/混凝土试件的抗剪性能也起到辅助作用,SF-橡胶/混凝土试件的剪切韧性及延性相比SF/混凝土试件进一步增加。采用水胶比优化设计后,随着橡胶掺量的增加,SF-橡胶/混凝土的抗剪强度、峰值变形及峰值前剪切韧性可基本保持不变,而峰值后韧性指标进一步增加,增幅可高达96%。根据试验结果,考虑橡胶及SF掺量的影响提出了SF-橡胶/混凝土的抗剪强度计算式。Abstract: Shear strength and toughness are important indices for evaluating load-resisting capacity and energy absorption of members under complex loading conditions. In order to study the shear-resisting capacity of high-strength steel fiber(SF)-rubber/concrete, 14 sets of SF-rubber/concrete specimens were designed for double-shear experiments, in which influence of parameters including SF volume fraction, rubber volume substation and water to binder ratio on the shear-resisting behavior and failure modes of SF-rubber/concrete were investigated. Research results show that the bridging action of SF and its positive synergy with rubber particles in SF-rubber/concrete can significantly improve the shear-resisting behavior of concrete. SF play a dominant role in shear-resisting behavior of SF-rubber/concrete specimens. The shear strength, deformation at peak load and shear toughness of SF-rubber/concrete specimens are significantly higher than the plain concrete and rubberized concrete specimens, which increase with the SF volume fraction, and the shear failure mode of SF-rubber/concrete is obviously ductile. When the SF volume fraction is 1.5vol% and the rubber content (volume substitution of sand) is 10%, the shear strength and deformation at peak load of SF-rubber/concrete specimens are 78% and 63% respectively, higher than those of the rubber concrete. Rubber particles also help to improve the shear-resisting behavior of SF-rubber/concrete. The shear toughness and ductility of SF-rubber/concrete are further increased compared with SF reinforced concrete. With the increase of rubber content, the shear strength, peak deformation and pre-peak shear toughness of SF-rubber/concrete can be unchanged after using the optimized water-binder ratio, while the post-peak toughness index can be further increased by 96%. Based on the test results, shear strength formula of SF-rubber/concrete was established considering the influence of SF volume fraction and rubber substitution.
-
表 1 试验混凝土配合比
Table 1. Mix proportion of test concrete
Type Specimen Water-binder
mass ratioVolume
fraction of
steel fiber ${V_{\rm{f}}}$/%Volume
substitution of
rubber particles ${\rho _{\rm{r}}}$/%Water/
kgCement/
kgFine aggre-
gate/kgCoarse aggre-
gate/kgMass fraction
of super
plasticizer/%PC R-0-F-0.0 0.340 0.0 0 160 470 820 960 1 Rubber/
concreteR-10-F-0.0 0.340 0.0 10 160 470 738 960 1 R-10-F-0.0-OP 0.285 0.0 10 155 544 738 960 1 R-20-F-0.0 0.340 0.0 20 160 470 656 960 1 R-20-F-0.0-OP 0.245 0.0 20 145 593 656 960 1 SF/
concreteR-0-F-0.5 0.340 0.5 0 160 470 820 960 1 R-0-F-1.0 0.340 1.0 0 160 470 820 960 1 R-0-F-1.5 0.340 1.5 0 160 470 820 960 1 SF-rubber/
concreteR-10-F-0.5 0.340 0.5 10 160 470 738 960 1 R-10-F-1.0 0.340 1.0 10 160 470 738 960 1 R-10-F-1.0-OP 0.285 1.0 10 155 544 738 960 1 R-10-F-1.5 0.340 1.5 10 160 470 738 960 1 R-20-F-1.0 0.340 1.0 20 160 470 656 960 1 R-20-F-1.0-OP 0.245 1.0 20 145 593 656 960 1 Notes: PC—Plain concrete; In specimen denotation section, R—Rubber particles; R-0, R-10 and R-20—Rubber volume substitution ratios of 0%, 10% and 20%, respectively; F—Steel fiber, F-0.0, F-0.5, F-1.0, F-1.5—Steel fiber volume fraction ratios of 0vol%, 0.5vol%, 1.0vol% and 1.5vol%, respectively; OP—Optimized water-binder ratio. 表 2 SF-橡胶/混凝土试件抗剪强度和峰值剪切变形试验结果
Table 2. SF-rubber/concrete specimens test results of shear strength and deformation at peak load
Specimen type Specimen ${f_{{\rm{cu}}}}$/MPa ${f_{\rm{v}}}$/MPa ${F_{\max }}$/kN ${\varDelta _{\rm{p} } }$/mm PC R-0-F-0.0 68.70 8.03 160.67 0.702 Rubber/concrete R-10-F-0.0 58.47 6.76 135.28 0.599 R-10-F-0.0-OP 68.23 8.00 160.00 0.737 R-20-F-0.0 46.50 5.53 110.69 0.529 R-20-F-0.0-OP 65.65 8.20 163.92 0.729 SF/concrete R-0-F-0.5 72.08 9.53 190.64 0.867 R-0-F-1.0 74.71 10.59 211.84 0.901 R-0-F-1.5 78.90 12.35 246.92 1.000 SF-rubber/concrete R-10-F-0.5 60.23 9.29 185.74 0.834 R-10-F-1.0 61.43 9.94 198.87 0.876 R-10-F-1.0-OP 74.72 10.80 216.00 0.914 R-10-F-1.5 65.72 12.03 240.67 0.978 R-20-F-1.0 48.93 9.07 181.39 0.909 R-20-F-1.0-OP 70.56 10.27 205.36 0.882 Notes: ${f_{{\rm{cu}}}}$—Cube compressive strength; fv—Shear strength; Fmax—Maximum shear load; ${\varDelta _{\rm{p}}}$—Deformation at peak load. 表 3 SF-橡胶/混凝土试件剪切荷载-变形曲线峰值前及峰值后的韧性指标
Table 3. Toughness index evaluation pre-peak and post-peak load of shear load-deformation curves of SF-rubber/concrete specimens
Type Specimen ${f_{{\rm{eq}}}}$/MPa ${\gamma _{\rm{p}}}$/% ${T_{\rm{p}}}$/
(104J·m−3)${f_{ {\rm{p} },{{k} } } }$/MPa ${R_{ {\rm{p} },{{k} } } }$/% ${f_{{\rm{p}},1.2}}$ ${f_{{\rm{p}},1.5}}$ ${f_{{\rm{p}},2.0}}$ ${R_{{\rm{p}},1.2}}$ ${R_{{\rm{p}},1.5}}$ ${R_{{\rm{p}},2.0}}$ PC R-0-F-0.0 3.66 0.70 2.57 − − − − − − Rubber/concrete R-10-F-0.0 2.99 0.60 1.80 − − − − − − R-10-F-0.0-OP 3.79 0.74 2.80 − − − − − − R-20-F-0.0 2.41 0.53 1.28 − − − − − − R-20-F-0.0-OP 3.60 0.73 2.62 − − − − − − SF/concrete R-0-F-0.5 3.73 0.87 3.23 0.44 − − 4.64 − − R-0-F-1.0 5.04 0.90 4.54 1.18 0.70 0.07 11.15 6.64 0.66 R-0-F-1.5 5.94 1.00 5.95 1.32 0.60 0.43 10.72 4.82 3.46 SF-rubber/concrete R-10-F-0.5 4.58 0.84 3.85 0.61 0.26 0.03 6.66 2.78 0.35 R-10-F-1.0 4.96 0.88 4.35 1.50 0.87 0.65 15.09 8.79 6.50 R-10-F-1.0-OP 5.23 0.91 4.78 1.63 0.91 0.68 15.06 8.46 6.26 R-10-F-1.5 5.65 0.98 5.52 1.39 1.05 0.60 11.54 8.73 4.94 R-20-F-1.0 4.68 0.91 4.26 1.35 1.13 0.79 14.93 12.47 8.70 R-20-F-1.0-OP 4.78 0.82 3.93 1.59 1.37 0.74 15.51 13.36 7.23 Notes: ${f_{{\rm{eq}}}}$—Initial equivalent shear strength; ${f_{ {\rm{p} },{{k} } } }$—Equivalent residual shear strength; ${R_{ {\rm{p} },{{k} } } }$—Residual shear toughness ratio. -
[1] HUANG Baoshan, LI Guoqiang, PANG Suseng, et al. Investigation into waste tire rubber-filled concrete[J]. Journal of Materials in Civil Engineering,2004,16(3):187-194. doi: 10.1061/(ASCE)0899-1561(2004)16:3(187) [2] 龙广成, 马昆林, XIE Xu, 等. 橡胶集料对混凝土抗压强度的降低效应[J]. 建筑材料学报, 2013(5):758-762. doi: 10.3969/j.issn.1007-9629.2013.05.004LONG Guangcheng, MA Kunlin, XIE Xu, et al. Effect of rubber aggregate on reduction of compressive strength of concrete[J]. Journal of Building Materials,2013(5):758-762(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.05.004 [3] RAFFOUL S, GARCIA R, PILAKOUTAS K, et al. Optimisation of rubberised concrete with high rubber content: An experimental investigation[J]. Construction and Building Materials,2016,124:391-404. doi: 10.1016/j.conbuildmat.2016.07.054 [4] NOAMAN A T, BAKAR B H A, AKIL H M. Experimental investigation on compression toughness of rubberized steel fibre concrete[J]. Construction and Building Materials,2016,115:163-170. doi: 10.1016/j.conbuildmat.2016.04.022 [5] LI Yue, LI Yaqiang. Experimental study on performance of rubber particle and steel fiber composite toughening concrete[J]. Construction and Building Materials,2017,146:267-275. doi: 10.1016/j.conbuildmat.2017.04.100 [6] FU Chuanqing, YE Hailong, WANG Kejin, et al. Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)[J]. Composites Part B: Engineering,2019,160:158-166. doi: 10.1016/j.compositesb.2018.10.045 [7] 朱江, 陈传锋, 朱志文, 等. 钢纤维改性再生橡胶高强混凝土性能试验研究[J]. 混凝土, 2009(5):86-89. doi: 10.3969/j.issn.1002-3550.2009.05.026ZHU Jiang, CHEN Chuanfeng, ZHU Zhiwen, et al. Experimental study on the properties of steel fiber modified high strength recycled rubber concrete[J]. Concrete,2009(5):86-89(in Chinese). doi: 10.3969/j.issn.1002-3550.2009.05.026 [8] SONNENBERG A M C, Al-MAHAIDI R, TAPLING. Behaviour of concrete under shear and normal stresses[J]. Magazine of Concrete Research,2003,55(4):367–372. [9] 张琦, 过镇海. 砼抗剪强度和剪切变形的研究[J]. 建筑结构学报, 1992, 13(05):17-24.ZHANG Qi, GUO Zhenhai. Study on shear strength and shear deformation of concrete[J]. Journal of Building Stuctures,1992,13(05):17-24(in Chinese). [10] 曲福进, 乔光, 赵国藩. 高性能纤维混凝土的抗剪性能研究[J]. 建筑结构, 2001(11):36-37.QU Fujin, QIAO Guang, ZHAO Guofan. Research on shear property of slurry infiltrated fiber concrete[J]. Building Stucture,2001(11):36-37(in Chinese). [11] 丁春林, 张国防, 张骅. 新型棒状聚丙烯纤维混凝土抗剪性能试验与比较[J]. 自然科学版, 2011, 39(6):802-806.DING Chunlin, ZHANG Guofang, ZHANG Hua. Experiment and comparison on shear behavior of new type rod-like polypropylene fiber reinforced concrete[J]. Journal of Tongji University (Natural Science),2011,39(6):802-806(in Chinese). [12] 张丽娟, 高丹盈, 王丽, 等. 钢纤维再生混凝土抗剪性能试验[J]. 土木工程与管理学报, 2017, 34(2):104-107. doi: 10.3969/j.issn.2095-0985.2017.02.024ZHANG Lijuan, GAO Danying, WANG Li, et al. Experiments on shear behavior of steel fiber recycled concrete[J]. Journal of Civil Engineering and Management,2017,34(2):104-107(in Chinese). doi: 10.3969/j.issn.2095-0985.2017.02.024 [13] MIRSAYAH A A, BANTHIA N. Shear strength of steel fiber-reinforced concrete[J]. ACI Materials Journal,2002,99(5):473-479. [14] HIGASHIYAMA H, BANTHIA N. Correlating flexural and shear toughness of lightweight fiber-reinforced concrete[J]. ACI Materials Journal,2008,105(3):251-257. [15] KHALOO A R, NAKSEOK K. Influence of concrete and fiber characteristics on behavior of steel fiber reinforced concrete under direct shear[J]. ACI Materials Journal,1997,94(6):592-601. [16] 丁一宁, 刘思国. 钢纤维自密实混凝土弯曲韧性和剪切韧性试验研究[J]. 土木工程学报, 2010, 43(11):55-63.DING Yining, LIU Siguo. Experimental study on flexural toughness and shear toughness of steel fiber self-compacting concrete[J]. China Civil Engineering Journal,2010,43(11):55-63(in Chinese). [17] 杨萌, 黄承逵, 刘毅. 钢纤维高强混凝土抗剪性能试验研究[J]. 大连理工大学学报, 2005, 6(45):842-846.YANG Meng, HUANG Chengkui, LIU Yi. Experimental research on shear behavior of high-strength SFR[J]. Journal of Dalian University of Technology,2005,6(45):842-846(in Chinese). [18] 朱海堂, 高丹盈, 汤寄予. 钢纤维高强混凝土的强度指标及其相互关系[J]. 建筑材料学报, 2009, 12(3):323-327. doi: 10.3969/j.issn.1007-9629.2009.03.016ZHU Haitang, GAO Danying, TANG Jiyu. Strength indexes of steel fiber reinforced high strength concrete and their interrelations[J]. Journal of Building Materials,2009,12(3):323-327(in Chinese). doi: 10.3969/j.issn.1007-9629.2009.03.016 [19] 邓明科, 刘华政, 马福栋, 等. 聚乙烯醇纤维改性高延性混凝土双面剪切试验及剪切韧性评价方法[J]. 复合材料学报, 2020, 37(2):461-471.DENG Mingke, LIU Huazheng, MA Fudong, et al. Double shear experiment of highly ductile concrete modified by polyvingl alcohol and shear toughness evaluation method[J]. Acta Materiae Compositae Sinica,2020,37(2):461-471(in Chinese). [20] 高丹盈, 朱海堂, 汤寄予. 纤维高强混凝土抗剪性能的试验研究[J]. 建筑结构学报, 2004, 25(6):88-92. doi: 10.3321/j.issn:1000-6869.2004.06.013GAO Danying, ZHU Haitang, TANG Jiyu. Experimental study on behavior of fiber reinforced high-strength concrete under shear[J]. Journal of Building Structures,2004,25(6):88-92(in Chinese). doi: 10.3321/j.issn:1000-6869.2004.06.013 [21] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS13: 2009[S]. 北京: 中国计划出版社. 2010: 54-59.China Association for Engineering Construction Standardization. Standard test methods for steel fiber reinforced concrete: CECS13: 2009[S]. Beijing: China Planning Press. 2010: 54-59(in Chinese).