留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针刺石英机织布损伤表征及针刺毡纤维分布取向的变化

杜培健 王心淼 吕庆涛 张一帆 陈利

杜培健, 王心淼, 吕庆涛, 等. 针刺石英机织布损伤表征及针刺毡纤维分布取向的变化[J]. 复合材料学报, 2021, 38(1): 268-278. doi: 10.13801/j.cnki.fhclxb.20200507.004
引用本文: 杜培健, 王心淼, 吕庆涛, 等. 针刺石英机织布损伤表征及针刺毡纤维分布取向的变化[J]. 复合材料学报, 2021, 38(1): 268-278. doi: 10.13801/j.cnki.fhclxb.20200507.004
DU Peijian, WANG Xinmiao, LV Qingtao, et al. Damage characterization of quartz woven fabric and change of the fiber distribution orientation of needle punched quartz fiber felt[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 268-278. doi: 10.13801/j.cnki.fhclxb.20200507.004
Citation: DU Peijian, WANG Xinmiao, LV Qingtao, et al. Damage characterization of quartz woven fabric and change of the fiber distribution orientation of needle punched quartz fiber felt[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 268-278. doi: 10.13801/j.cnki.fhclxb.20200507.004

针刺石英机织布损伤表征及针刺毡纤维分布取向的变化

doi: 10.13801/j.cnki.fhclxb.20200507.004
基金项目: 天津市教委科研计划项目(2017KJ066);天津市科技重大专项与工程(18ZXJMTG00190);山西省科技重大专项(20181102022);天津市高等学校创新团队培养计划(TD13-5043)
详细信息
    通讯作者:

    陈利,博士,教授,博士生导师,研究方向为先进纺织复合材料设计成型与性能分析 E-mail:chenli@tjpu.edu.cn

  • 中图分类号: TB332;TB383

Damage characterization of quartz woven fabric and change of the fiber distribution orientation of needle punched quartz fiber felt

  • 摘要: 为探究针刺工艺中针刺密度的持续变化对3D针刺石英复合材料预制体中的机织石英布的损伤程度影响及对石英毡纤维分布取向的影响,采用体式显微镜对不同针刺密度下的机织物形貌的变化进行图像采集,并提出一种基于MATLAB软件可表征不同针刺密度对石英机织物损伤程度的方法。采用岛津AGS-250KNE拉伸试验机对不同针刺密度下的机织物样品进行拉伸性能测试,采用DHU-11非织造纤维取向分析仪对不同针刺密度下0°~180°范围内非织造石英毡的纤维取向分布进行测试。结果表明,当针刺密度分别为210刺/cm2和245刺/cm2时,相应的表征破损程度R值近似相等,即R210=0.518近似等于R245=0.515,可认为当针刺密度达到210刺/cm2时,针刺机织物力学性能损伤达到极限;针刺密度为0时,非织造石英毡的纤维取向分布呈明显正态分布。同一针刺密度下的纤维取向分布在0°~15°和165°~180°范围内,及在90°下的纤维分布量明显大于其他角度下的纤维分布量,且随着针刺密度的增加,同一角度下的纤维取向分布量总体呈逐渐减小趋势。

     

  • 图  1  3D针刺石英复合材料纤维预制体示意图

    Figure  1.  Schematic image of preform for 3D needle punching quartz fiber composites

    图  2  针刺密度在10~60刺/cm2 (步长为10刺/cm2)范围内沿针刺方向机织物背面纤维分布图像

    Figure  2.  Fiber distribution in needle punched direction images of quartz fabric with needle punched density of 10–60 punches/cm2 (at 10 punches/cm2 increments)

    图  3  针刺密度在70~245刺/cm2 (步长为35刺/cm2)范围内沿针刺方向机织物背面纤维分布图像

    Figure  3.  Fiber distribution in needle punched direction images of quartz fabric with needle punched density of 70–245 punches/cm2 (at 35 punches/cm2 increments)

    图  4  针刺机织物形貌损伤程度表征流程

    Figure  4.  Flow chart of damage morphology degree of needled woven fabric

    图  5  针刺密度在10~60刺/cm2 (步长为10刺/cm2)范围内沿针刺方向机织物背面纤维分布图像的二值化图像

    Figure  5.  Fiber distribution in needle punched direction binary images of quartz fabric with needle punched density of 10–60 punches/cm2 (at 10 punches/cm2 increments)

    图  6  针刺密度在70~245刺/cm2 (步长为35刺/cm2)范围内沿针刺方向机织物背面纤维分布图像的二值化图像

    Figure  6.  Fiber distribution in needle punched direction binary images of quartz fabric with needle punched density of 70–245 punches/cm2 (at 35 punches/cm2 increments)

    图  7  针刺密度在10~245刺/cm2下的针刺石英机织物损伤程度曲线

    Figure  7.  Damage degree curve of needle punched quartz woven fabrics at 10–245 punches/cm2

    图  8  针刺密度为0~245刺/cm2时经纬向针刺机织物拉伸断裂强力损失率曲线

    Figure  8.  Loss ratio of tensile breaking force for needle-punched quartz woven fabric at 0–245 punches/cm2 in warp and weft direction

    图  9  针刺前石英纤维梳理毡宏观形貌及其纤维分布取向

    Figure  9.  Maroscopic morphology and histogram of quartz fiber distribution orientation of quartz nwovens before punching

    图  10  不同针刺密度下石英非织造布形貌图像

    Figure  10.  Microscopic morphology images of quarts nonwovens at different needle punching densities

    图  11  不同针刺密度下石英纤维非织造毡中纤维取向分布

    Figure  11.  Fiber orientation distribution for quartz nonwovens at different needle punching densities

    表  1  试验用2/1斜纹石英机织布参数

    Table  1.   Parameters of experimental quartz woven fabric

    Gramag/
    (g·cm−2)
    Warp
    density/
    cm
    Weft
    density/
    cm
    Warp yarn
    fineness/
    tex
    Weft yarn
    fineness/
    tex
    Fiber
    density/
    (g·cm−3)
    Thinckness/
    mm
    Warp yarn
    width/
    mm
    Weft yarn
    width/
    mm
    560 5 7 571.5 381 2.2 0.71 2 1.43
    下载: 导出CSV

    表  2  针刺工艺参数表

    Table  2.   Parameters of acupuncture process

    Needling depth/
    mm
    Needling density/
    m–1
    Punching frequency/
    (punches·min−1)
    14 363 720
    下载: 导出CSV

    表  3  拉伸试验参数及样品尺寸

    Table  3.   Tensile test parameters and sample size

    Number of experimental
    group
    Number of experimental
    sample per group
    Tensile sample
    size/mm×mm
    Initial gauge
    length/mm
    Stretching speed/
    (mm·min−1)
    26 5 350×50 200 100
    下载: 导出CSV

    表  4  针刺密度为0~245刺/cm2范围内的石英机织布经纬向平均最大拉伸断裂强力及其保留率数据

    Table  4.   Mean tensile breaking force and ratio of mean tensile breaking force with needle punching density of 0–245 punches/cm2

    Needle punching density/
    (punches·cm−2)
    Mean tensile breaking force/NLoss percent of mean tensile breaking force [1–n/m]×100%/%
    WarpWeftWarpWeft
    0 5 487.25 5 078.13 0 0
    10 2 710.50 2 550.00 50.60 49.79
    20 1 567.00 664.58 71.44 86.92
    30 1 251.00 578.37 77.20 88.61
    40 1 103.00 518.75 79.90 89.79
    50 1 038.40 405.50 81.08 92.01
    60 863.00 319.37 84.27 93.71
    70 306.00 230.83 94.42 95.44
    105 220.69 116.68 95.98 97.70
    140 82.01 73.37 98.51 98.56
    175 63.60 61.46 98.84 99.00
    210 33.83 17.17 99.39 99.64
    245 19.37 9.38 99.65 99.81
    下载: 导出CSV
  • [1] 张晓虎, 李贺军, 郝志彪, 等. 碳喷管-碳材料出口锥预制体技术[J]. 材料导报, 2007, 21(2):98-101. doi: 10.3321/j.issn:1005-023X.2007.02.025

    ZHANG Xiaohu, LI Hejun, HAO Zhibiao, et al. Preform technology of carbon-carbon composites nozzle exit cone[J]. Materials Review,2007,21(2):98-101(in Chinese). doi: 10.3321/j.issn:1005-023X.2007.02.025
    [2] 郑蕊, 徐征, 李旭嘉, 等. 不同针刺预制体结构对C/C复合材料力学性能的影响[J]. 宇航材料工艺, 2012, 42(5):26-29. doi: 10.3969/j.issn.1007-2330.2012.05.006

    ZHENG Rui, XU Zheng, LI Jiaxu, et al. Effect of needled preform structure on mechanical properties of C/C composite[J]. Aerospace Materials & Technology,2012,42(5):26-29(in Chinese). doi: 10.3969/j.issn.1007-2330.2012.05.006
    [3] 王小群, 杜善义, 韩杰才. 高速宽频带防空导弹天线罩研制探讨[J]. 宇航材料工艺, 1998(2):17-23.

    WANG Xiaoqun, DU Shanyi, HAN Jiecai. The study on manufacturing of radome for board-band supersonic missile[J]. Aerospace Materials & Technology,1998(2):17-23(in Chinese).
    [4] 陈利, 张春燕, 陈小明, 等. 石英纤维单向编织扁带的结构与性能[J]. 天津工业大学学报, 2017, 36(3):28-32. doi: 10.3969/j.issn.1671-024x.2017.03.006

    CHEN Li, ZHANG Chunyan, CHEN Xiaoming, et al. Structure and properties of quartz unidirectional braided flat tapes[J]. Journal of Tianjin Polytechnic University,2017,36(3):28-32(in Chinese). doi: 10.3969/j.issn.1671-024x.2017.03.006
    [5] 纪伶伶, 嵇阿琳, 李飞, 等. 不同机织结构碳布针刺后拉伸性能[J]. 宇航材料工艺, 2013, 43(5):38-42. doi: 10.3969/j.issn.1007-2330.2013.05.008

    JI Lingling, JI Alin, LI Fei, et al. Tensile stress of needled carbon cloth with different woven structures[J]. Aerospace Materials & Technology,2013,43(5):38-42(in Chinese). doi: 10.3969/j.issn.1007-2330.2013.05.008
    [6] 杨丽燕. 基于针刺加固的高温滤料玻纤基布损伤性研究[D]. 上海: 东华大学, 2012.

    YANG Liyan. The study of damage on glass fiber base fabric of high temperature resistant filter material due to needle punched[D]. Shanghai: Donghua University, 2012(in Chinese).
    [7] 刘建军, 李铁虎, 郝志彪, 等. 针刺碳布网胎复合织物中的纤维转移和损伤研究[J]. 炭素技术, 2008, 27(5):13-15.

    LIU Jianjun, LI Tiehu, HAO Zhibiao, et al. Study on fiber transfer and damage of composite fabric made by needle punched carbon cloth and web[J]. Carbon Techniques,2008,27(5):13-15(in Chinese).
    [8] ROY R, ISHTIAQUE S M. Influcence of punching parameters on fiber orientation and related physical and mechanical properties of needle punched nonwoven[J]. Fibers and Polymers, 2019, 20(1): 191-198.
    [9] KANG T J, CHOI S H, KIM S M, et al. Automatic structure analysis and objective evaluation of woven fabric using image analysis[J]. Textile Research Journal,2001,71(3):261-270. doi: 10.1177/004051750107100312
    [10] ÇAY A, VASSILIADIS S, RANGOUSSI M, et al. On the use of image processing techniques for the estimation of the porosity of textile fabrics[J]. International Journal of Materials and Textile Engineering,2007,1(2):421-424.
    [11] ALGABA I, RIVA A, CREWS P C. Influence of fiber type and fabric porosity onthe UPF of summer fabrics[J]. AATCC Review,2004,4(2):26-31.
    [12] TÀPIAS M, RALLÓ M, ESCOFET J, et al. Objective measure of woven fabric’s cover factor by image processing[J]. Textile Research Journal,2009,80 (1):35-44.
    [13] TÀPIAS M, RALLÓ M, ESCOFET J. Automatic measurements of partial cover factors and yarn diameters in fabrics using image processing[J]. Textile Research Journal,2010,81(2):173-186.
    [14] 宋磊磊, 李嘉禄, 赵玉芬, 等. 预制体结构对针刺石英纤维/环氧树脂复合材料导热性能的影响[J]. 复合材料学报, 2016, 33(5):955-961.

    SONG Leiei, LI Jialu, ZHAO Yufen, et al. Effects of preform structure on thermal conductivity of needle-punched quartz fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2016,33(5):955-961(in Chinese).
    [15] 范尚武, 张立同, 成来飞. 三维针刺C/SiC刹车材料的热物理性能[J]. 复合材料学报, 2011, 28(3):56-62.

    FAN Shangwu, ZHANG Litong, CHENG Laifei. Thermal physical properties of 3D needled C/SiC brake materials[J]. Acta Materiae Compositae Sinica,2011,28(3):56-62(in Chinese).
    [16] 陈阳, 陈霞, 汪军. 基于图像处理的织物覆盖系数检测[J]. 西安工程大学学报, 2016, 30(1):16-20.

    CHEN Yang, CHEN Xia, WANG Jun. Inspection on the cover factors of fabrics based on image processing[J]. Journal of Xi’an Polytechnic University,2016,30(1):16-20(in Chinese).
    [17] 梁翠芳, 陈霞, 傅婷, 等. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5):49-54.

    LIANG Cuifang, CHEN Xia, FU Ting, et al. Inspection method of lattice apron porosity based on image processing[J]. Journal of Textile Reasearch,2014,35(5):49-54(in Chinese).
    [18] 中国国家标准化管理委员会. 增强材料-机织物试验方法第5部分: 玻璃纤维拉伸断裂强力和断裂伸长的测定: GB/T 7689.5—2013[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Reinforcements: Test method for woven fabrics Part 5: Determination of glass fiber tensile breaking force and elongation at break: GB/T 7689.5—2013[S]. Beijing: China Standards Press, 2014(in Chinese).
    [19] 吴冰, 秦志远. 自动确定图像二值化最佳阈值的新方法[J]. 测绘学院学报, 2001, 18(4):283-286.

    WU Bing, QIN Zhiyuan. New approaches for the automatic selection of the optimal threshold in image binarization[J]. Journal of Institute of Surveying and Mapping,2001,18(4):283-286(in Chinese).
    [20] 李一雷. 一种自适应阈值二值法在泡界线检测中的应用[J]. 浙江交通职业技术学院学报, 2018, 19(1):49-53.

    LI Yilei. The application of an adaptive threshold binarization algorithm in foam line detection[J]. Journal of Zhejiang Institute of Communications,2018,19(1):49-53(in Chinese).
    [21] 刘晓玉, 王欢欢. 光照不均匀钢坯缺陷图像的二值化方法[J]. 控制工程, 2018, 12(25):42-45.

    LIU Xiaoyu, WANG Huanhuan. Non-uniform illumination and binary processing of billet defect detection[J]. Control Engineering of China,2018,12(25):42-45(in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1307
  • HTML全文浏览量:  444
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 录用日期:  2020-05-05
  • 网络出版日期:  2020-05-07
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回