Damage characterization of quartz woven fabric and change of the fiber distribution orientation of needle punched quartz fiber felt
-
摘要: 为探究针刺工艺中针刺密度的持续变化对3D针刺石英复合材料预制体中的机织石英布的损伤程度影响及对石英毡纤维分布取向的影响,采用体式显微镜对不同针刺密度下的机织物形貌的变化进行图像采集,并提出一种基于MATLAB软件可表征不同针刺密度对石英机织物损伤程度的方法。采用岛津AGS-250KNE拉伸试验机对不同针刺密度下的机织物样品进行拉伸性能测试,采用DHU-11非织造纤维取向分析仪对不同针刺密度下0°~180°范围内非织造石英毡的纤维取向分布进行测试。结果表明,当针刺密度分别为210刺/cm2和245刺/cm2时,相应的表征破损程度R值近似相等,即R210=0.518近似等于R245=0.515,可认为当针刺密度达到210刺/cm2时,针刺机织物力学性能损伤达到极限;针刺密度为0时,非织造石英毡的纤维取向分布呈明显正态分布。同一针刺密度下的纤维取向分布在0°~15°和165°~180°范围内,及在90°下的纤维分布量明显大于其他角度下的纤维分布量,且随着针刺密度的增加,同一角度下的纤维取向分布量总体呈逐渐减小趋势。Abstract: For exploring the effect of continuously changed needle punched density during the needle punching process on the damage degree of the quartz woven fabrics and the fiber orientation distribution of quartz nonwoven felt in preform of the 3D needle punched composites, stereomicroscope was used to gather the pictures, which recorded the changes in the macro morphology with different needle punched densities, and an approach based on MATLAB software to characterize the damage degree of the quartz fabric woven was presented. Shimadzu AGS-250KNE universal testing machine was used to test the tensile property of the quartz woven fabrics under different needle punched densities. DHU-11 nonwoven felt orientation distribution testing machine was used for testing the fiber orientation distribution of the quartz nonwoven felts under different needle density values and angle range of 0°~180°. The results of the experiment indicate that the R value presenting to characterize damage degree of the quartz fabric woven is 0.518 when the needle punched density reaches 210 punches/cm2, which is approximately equal to the R value at 245 punches/cm2 (0.515). Therefore, it can be concluded that the damage degree of the quartz fabric woven has reached the limit when the needle-punched density reaches 210 punches/cm2. When the needle punched density is zero, the fiber orientation distribution of quartz nonwoven felt shows obvious normal distribution. The fiber orientation distribution amount within the angle range of 0°-15°, 165°-180° and 90° is bigger than that of other angle range under the same needle punched density. Moreover, the fiber orientation distribution amount under the same angle tends to decrease gradually with the increase of the needle needle punched density.
-
表 1 试验用2/1斜纹石英机织布参数
Table 1. Parameters of experimental quartz woven fabric
Gramag/
(g·cm−2)Warp
density/
cmWeft
density/
cmWarp yarn
fineness/
texWeft yarn
fineness/
texFiber
density/
(g·cm−3)Thinckness/
mmWarp yarn
width/
mmWeft yarn
width/
mm560 5 7 571.5 381 2.2 0.71 2 1.43 表 2 针刺工艺参数表
Table 2. Parameters of acupuncture process
Needling depth/
mmNeedling density/
m–1Punching frequency/
(punches·min−1)14 363 720 表 3 拉伸试验参数及样品尺寸
Table 3. Tensile test parameters and sample size
Number of experimental
groupNumber of experimental
sample per groupTensile sample
size/mm×mmInitial gauge
length/mmStretching speed/
(mm·min−1)26 5 350×50 200 100 表 4 针刺密度为0~245刺/cm2范围内的石英机织布经纬向平均最大拉伸断裂强力及其保留率数据
Table 4. Mean tensile breaking force and ratio of mean tensile breaking force with needle punching density of 0–245 punches/cm2
Needle punching density/
(punches·cm−2)Mean tensile breaking force/N Loss percent of mean tensile breaking force [1–n/m]×100%/% Warp Weft Warp Weft 0 5 487.25 5 078.13 0 0 10 2 710.50 2 550.00 50.60 49.79 20 1 567.00 664.58 71.44 86.92 30 1 251.00 578.37 77.20 88.61 40 1 103.00 518.75 79.90 89.79 50 1 038.40 405.50 81.08 92.01 60 863.00 319.37 84.27 93.71 70 306.00 230.83 94.42 95.44 105 220.69 116.68 95.98 97.70 140 82.01 73.37 98.51 98.56 175 63.60 61.46 98.84 99.00 210 33.83 17.17 99.39 99.64 245 19.37 9.38 99.65 99.81 -
[1] 张晓虎, 李贺军, 郝志彪, 等. 碳喷管-碳材料出口锥预制体技术[J]. 材料导报, 2007, 21(2):98-101. doi: 10.3321/j.issn:1005-023X.2007.02.025ZHANG Xiaohu, LI Hejun, HAO Zhibiao, et al. Preform technology of carbon-carbon composites nozzle exit cone[J]. Materials Review,2007,21(2):98-101(in Chinese). doi: 10.3321/j.issn:1005-023X.2007.02.025 [2] 郑蕊, 徐征, 李旭嘉, 等. 不同针刺预制体结构对C/C复合材料力学性能的影响[J]. 宇航材料工艺, 2012, 42(5):26-29. doi: 10.3969/j.issn.1007-2330.2012.05.006ZHENG Rui, XU Zheng, LI Jiaxu, et al. Effect of needled preform structure on mechanical properties of C/C composite[J]. Aerospace Materials & Technology,2012,42(5):26-29(in Chinese). doi: 10.3969/j.issn.1007-2330.2012.05.006 [3] 王小群, 杜善义, 韩杰才. 高速宽频带防空导弹天线罩研制探讨[J]. 宇航材料工艺, 1998(2):17-23.WANG Xiaoqun, DU Shanyi, HAN Jiecai. The study on manufacturing of radome for board-band supersonic missile[J]. Aerospace Materials & Technology,1998(2):17-23(in Chinese). [4] 陈利, 张春燕, 陈小明, 等. 石英纤维单向编织扁带的结构与性能[J]. 天津工业大学学报, 2017, 36(3):28-32. doi: 10.3969/j.issn.1671-024x.2017.03.006CHEN Li, ZHANG Chunyan, CHEN Xiaoming, et al. Structure and properties of quartz unidirectional braided flat tapes[J]. Journal of Tianjin Polytechnic University,2017,36(3):28-32(in Chinese). doi: 10.3969/j.issn.1671-024x.2017.03.006 [5] 纪伶伶, 嵇阿琳, 李飞, 等. 不同机织结构碳布针刺后拉伸性能[J]. 宇航材料工艺, 2013, 43(5):38-42. doi: 10.3969/j.issn.1007-2330.2013.05.008JI Lingling, JI Alin, LI Fei, et al. Tensile stress of needled carbon cloth with different woven structures[J]. Aerospace Materials & Technology,2013,43(5):38-42(in Chinese). doi: 10.3969/j.issn.1007-2330.2013.05.008 [6] 杨丽燕. 基于针刺加固的高温滤料玻纤基布损伤性研究[D]. 上海: 东华大学, 2012.YANG Liyan. The study of damage on glass fiber base fabric of high temperature resistant filter material due to needle punched[D]. Shanghai: Donghua University, 2012(in Chinese). [7] 刘建军, 李铁虎, 郝志彪, 等. 针刺碳布网胎复合织物中的纤维转移和损伤研究[J]. 炭素技术, 2008, 27(5):13-15.LIU Jianjun, LI Tiehu, HAO Zhibiao, et al. Study on fiber transfer and damage of composite fabric made by needle punched carbon cloth and web[J]. Carbon Techniques,2008,27(5):13-15(in Chinese). [8] ROY R, ISHTIAQUE S M. Influcence of punching parameters on fiber orientation and related physical and mechanical properties of needle punched nonwoven[J]. Fibers and Polymers, 2019, 20(1): 191-198. [9] KANG T J, CHOI S H, KIM S M, et al. Automatic structure analysis and objective evaluation of woven fabric using image analysis[J]. Textile Research Journal,2001,71(3):261-270. doi: 10.1177/004051750107100312 [10] ÇAY A, VASSILIADIS S, RANGOUSSI M, et al. On the use of image processing techniques for the estimation of the porosity of textile fabrics[J]. International Journal of Materials and Textile Engineering,2007,1(2):421-424. [11] ALGABA I, RIVA A, CREWS P C. Influence of fiber type and fabric porosity onthe UPF of summer fabrics[J]. AATCC Review,2004,4(2):26-31. [12] TÀPIAS M, RALLÓ M, ESCOFET J, et al. Objective measure of woven fabric’s cover factor by image processing[J]. Textile Research Journal,2009,80 (1):35-44. [13] TÀPIAS M, RALLÓ M, ESCOFET J. Automatic measurements of partial cover factors and yarn diameters in fabrics using image processing[J]. Textile Research Journal,2010,81(2):173-186. [14] 宋磊磊, 李嘉禄, 赵玉芬, 等. 预制体结构对针刺石英纤维/环氧树脂复合材料导热性能的影响[J]. 复合材料学报, 2016, 33(5):955-961.SONG Leiei, LI Jialu, ZHAO Yufen, et al. Effects of preform structure on thermal conductivity of needle-punched quartz fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2016,33(5):955-961(in Chinese). [15] 范尚武, 张立同, 成来飞. 三维针刺C/SiC刹车材料的热物理性能[J]. 复合材料学报, 2011, 28(3):56-62.FAN Shangwu, ZHANG Litong, CHENG Laifei. Thermal physical properties of 3D needled C/SiC brake materials[J]. Acta Materiae Compositae Sinica,2011,28(3):56-62(in Chinese). [16] 陈阳, 陈霞, 汪军. 基于图像处理的织物覆盖系数检测[J]. 西安工程大学学报, 2016, 30(1):16-20.CHEN Yang, CHEN Xia, WANG Jun. Inspection on the cover factors of fabrics based on image processing[J]. Journal of Xi’an Polytechnic University,2016,30(1):16-20(in Chinese). [17] 梁翠芳, 陈霞, 傅婷, 等. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5):49-54.LIANG Cuifang, CHEN Xia, FU Ting, et al. Inspection method of lattice apron porosity based on image processing[J]. Journal of Textile Reasearch,2014,35(5):49-54(in Chinese). [18] 中国国家标准化管理委员会. 增强材料-机织物试验方法第5部分: 玻璃纤维拉伸断裂强力和断裂伸长的测定: GB/T 7689.5—2013[S]. 北京: 中国标准出版社, 2014.Standardization Administration of the People’s Republic of China. Reinforcements: Test method for woven fabrics Part 5: Determination of glass fiber tensile breaking force and elongation at break: GB/T 7689.5—2013[S]. Beijing: China Standards Press, 2014(in Chinese). [19] 吴冰, 秦志远. 自动确定图像二值化最佳阈值的新方法[J]. 测绘学院学报, 2001, 18(4):283-286.WU Bing, QIN Zhiyuan. New approaches for the automatic selection of the optimal threshold in image binarization[J]. Journal of Institute of Surveying and Mapping,2001,18(4):283-286(in Chinese). [20] 李一雷. 一种自适应阈值二值法在泡界线检测中的应用[J]. 浙江交通职业技术学院学报, 2018, 19(1):49-53.LI Yilei. The application of an adaptive threshold binarization algorithm in foam line detection[J]. Journal of Zhejiang Institute of Communications,2018,19(1):49-53(in Chinese). [21] 刘晓玉, 王欢欢. 光照不均匀钢坯缺陷图像的二值化方法[J]. 控制工程, 2018, 12(25):42-45.LIU Xiaoyu, WANG Huanhuan. Non-uniform illumination and binary processing of billet defect detection[J]. Control Engineering of China,2018,12(25):42-45(in Chinese).