热熔法预浸料用氰酸酯树脂的性能

霍肖蒙, 王帆, 姚卓君, 戴晶滨, 朱亚平, 齐会民

霍肖蒙, 王帆, 姚卓君, 等. 热熔法预浸料用氰酸酯树脂的性能[J]. 复合材料学报, 2020, 37(12): 3071-3078. DOI: 10.13801/j.cnki.fhclxb.20200506.001
引用本文: 霍肖蒙, 王帆, 姚卓君, 等. 热熔法预浸料用氰酸酯树脂的性能[J]. 复合材料学报, 2020, 37(12): 3071-3078. DOI: 10.13801/j.cnki.fhclxb.20200506.001
HUO Xiaomeng, WANG Fan, YAO Zhuojun, et al. Properties of cyanate ester resin for hot melt prepreg[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3071-3078. DOI: 10.13801/j.cnki.fhclxb.20200506.001
Citation: HUO Xiaomeng, WANG Fan, YAO Zhuojun, et al. Properties of cyanate ester resin for hot melt prepreg[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3071-3078. DOI: 10.13801/j.cnki.fhclxb.20200506.001

热熔法预浸料用氰酸酯树脂的性能

基金项目: 上海航天科技创新基金(SAST2016120);中央高校基本科研业务费专项资金(50321041918013;50321041917001)
详细信息
    通讯作者:

    齐会民,博士,教授,博士生导师,研究方向为耐高温树脂及复合材料  E-mail: qihm@ecust.edu.cn

  • 中图分类号: TB332

Properties of cyanate ester resin for hot melt prepreg

  • 摘要: 采用聚醚砜(PES)对氰酸酯树脂改性,制备出PM915树脂。对PM915树脂的工艺性能和固化物性能进行了系统研究,该树脂成膜性和贮存稳定性良好,适用于热熔法预浸料工艺。研究了PM915树脂的流变性能及凝胶时间,树脂在70℃时的黏度为20 Pa·s左右,在120℃条件下可保持黏度稳定时间达115 min,160℃时凝胶时间为40 min。PM915树脂制备过程中部分反应热已释放,其拥有较低的固化放热焓,固化温度为220℃。通过引入热塑性组分PES,PM915树脂的固化收缩率低至0.16%。PM915树脂固化物具有优良的热性能,热失重5%时的温度Td5=423℃,玻璃化转变温度Tg=276℃,热膨胀系数为4.4×10−5/℃。通过热塑性树脂的改性,引入了柔性基团,进而提高了树脂固化物的韧性,PM915树脂固化物的弯曲强度和弯曲模量分别为139.3 MPa和4.2 GPa,拉伸强度和拉伸模量分别为75.8 MPa和3.8 GPa;扫描电子显微镜(SEM)表征显示PM915树脂固化物为韧性断裂。结果表明,PM915树脂是一种适用于热熔法预浸料的氰酸酯树脂基体,且具有低固化收缩率、高尺寸稳定性和优良耐热性,可应用于卫星等航天器结构件。
    Abstract: PM915 resin was prepared by modifying cyanate ester resin with polyethersulfone (PES). The processability and cured resin properties of PM915 resin were investigated systematically. The PM915 resin has excellent process performance, good film-forming property and better storage stability, and could be used to prepare prepreg by hot melting method. The process properties such as rheological property and gel time of PM915 resin were measured. The results show that the viscosity of PM915 resin at 70℃ is about 20 Pa·s, the viscosity of the resin can keep stable for 115 min at 120℃, and the gelation time is 40 min at 160℃. Due to the release of some reaction heat in the preparation process, the curing exothermic enthalpy of PM915 resin decreases, and the curing temperature of PM915 resin is 220℃. The curing shrinkage of PM915 resin is as low as 0.16% due to the introduction of PES. The temperature at 5% thermal weight loss Td5, glass transition temperature Tg and thermal expansion coefficient of cured PM915 resin are 423℃, 276℃ and 4.4×10−5/℃, respectively, which indicates that the cured PM915 resin possesses excellent thermal properties. After modification, the toughness of the cured resin has been greatly improved owing to the introduction of flexible groups. The flexural strength and modulus of the cured PM915 resin are 139.3 MPa and 4.2 GPa, the tensile strength and modulus of the cured PM915 resin are 75.8 MPa and 3.8 GPa respectively. What’s more, the investigation of fracture surface by scanning electron microscope (SEM) indicates that the cured PM915 resin exhibits toughness fracture. Therefore, the PM915 resin is a kind of ideal resin matrix for fiber reinforced prepregs by hot melting process, and possesses low curing shrinkage, high dimensional stability and heat resistance, which can be used in satellites and other spacecraft.
  • 随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。

    采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。

    文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。

    综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。

    CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。

    图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。

    图  1  碳纤维增强树脂复合材料(CFRP)筋高温拉伸试验
    Figure  1.  High temperature tensile test of carbon fiber reinforced polymer (CFRP) tendon

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。

    图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。

    图  2  不同温度下保温 2 h后的CFRP筋材抗拉强度
    Figure  2.  Tensile strength of CFRP tendons at different temperatures with heat preservation 2 h
    图  3  CFRP筋材高温拉伸破断状态
    Figure  3.  Tensile fracture state of CFRP tendons at high temperature

    对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。

    图  4  210℃不同保温时间下的CFRP筋材抗拉强度
    Figure  4.  Tensile strength of CFRP tendons with different holding time at 210℃

    可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。

    图  5  经历不同温度加热2 h冷却后CFRP筋材抗拉强度
    Figure  5.  Tensile strength of CFRP tendons after heating at different temperatures for 2 h and cooling

    分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。

    对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。

    表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。

    图  6  持荷条件下CFRP筋阻燃防火措施对比
    Figure  6.  Comparison on fire retardant measures of CFRP tendons under load conditions
    表  1  不同防护类型下CFRP筋材温度及持荷性能
    Table  1.  Temperature and load carrying capacity of CFRP tendons under different protection types
    Protection
    type
    Protection thickness/mmBurning time/minCFRP tendons temperature/℃Stress level/MPaTest resultResident strength/MPa
    2510001170Resin pyrolysis,
    tendon tensile fracture
    Ceramic fiber cloth451205621170Resin pyrolysis,
    tendon is not fracture
    1646
    Asbestos451206351170Resin pyrolysis,
    tendon is not fracture
    1249
    Asbestos601201701170The tendon is not damaged3121
    下载: 导出CSV 
    | 显示表格
    图  7  CFRP筋材高温下树脂热解(562℃,2 h)
    Figure  7.  Resin pyrolysis of tendons at high temperature (562℃, 2 h)
    图  8  树脂热解后CFRP筋材极限拉伸破断
    Figure  8.  Ultimate tensile fracture of CFRP tendons after resin pyrolysis

    以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。

    选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。

    图  9  刷有阻燃防火涂层的CFRP索股
    Figure  9.  CFRP cable strand coated with fire retardant coating

    在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。

    图  10  阻燃防火涂层遇火焰发泡
    Figure  10.  Fire retardant coating foams when expose to fire
    图  11  无阻燃防火涂层聚乙烯(PE)燃烧
    Figure  11.  Combustion of polyethylene (PE) sheath without fire retardant coating
    图  12  2 mm厚阻燃防火涂层温度-时间曲线
    Figure  12.  Temperature-time curve of 2 mm thickness fire retardant coating

    为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。

    图  13  CFRP索股测温位置
    Figure  13.  Temperature measurement position of CFRP cable strand
    图  14  CFRP索股不同位置处温度-时间曲线
    Figure  14.  Temperature-time curves at different positions of CFRP cable strand

    针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。

    图  15  不同厚度阻燃防火涂层的温度-时间曲线
    Figure  15.  Temperature-time curves of fire retardant coating with different thickness

    图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。

    图  16  2 mm厚度阻燃防火涂层的CFRP索股膨胀发泡过程
    Figure  16.  Intumescent process of CFRP cable strand coated with 2 mm thickness fire retardant coating

    (1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。

    (2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。

    (3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。

    (4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。

  • 图  1   双酚A型氰酸酯单体(BACy)和聚醚砜(PES)的结构式

    Figure  1.   Structures of bisphenol A cyanate monomer (BACy) and polyethersulfone (PES)

    图  2   PES改性氰酸酯树脂(PM915树脂)的流变性能

    Figure  2.   Rheological properties of cyanate ester resin modified by PES (PM915) resin

    图  3   BACy及PM915树脂的DSC曲线

    Figure  3.   DSC curves of BACy and PM915 resin

    图  4   BACy-C和PM915-C的TGA曲线和DTG曲线

    Figure  4.   TGA and DTG curves of BACy-C and PM915-C

    图  5   BACy-C和PM915-C的DMA曲线

    Figure  5.   DMA curves of BACy-C and PM915-C

    图  6   PM915-C的热膨胀曲线

    Figure  6.   Thermal expansion curve of PM915-C

    图  7   BACy-C及PM915-C的介电性能

    Figure  7.   Dielectric properties of BACy-C and PM915-C

    图  8   PM915-C的断面形貌

    Figure  8.   Morphology of PM915-C

    表  1   PM915树脂凝胶时间

    Table  1   Gelation time of PM915 resin

    SampleGelation time t/min
    130℃140℃150℃160℃
    PM915 151 115 75 40
    下载: 导出CSV

    表  2   BACy及PM915树脂的DSC数据

    Table  2   DSC date of BACy and PM915 resin

    SampleTi/℃Tp/℃Tf/℃ΔH/(J·g-1)
    BACy 216.2 305.9 361.5 703.8
    PM915 142.6 222.9 288.3 387.2
    Notes: Ti, Tp and Tf —Initial curing temperature, peak curing temperature and final curing temperature, respectively; ΔH—Curing exothermic enthalpy.
    下载: 导出CSV

    表  3   BACy及PM915树脂的固化收缩率

    Table  3   Shrinkage of BACy and PM915

    Sampleρ1/(g·mL−1)ρ2/(g·mL−1)Vs/%
    BACy 1.208 1.234 2.11
    PM915 1.218 1.220 0.16
    Notes: ρ1—Density of uncured resin; ρ2—Density of cured resin; Vs—Cure shrinkage rate.
    下载: 导出CSV

    表  4   BACy-C及PM915-C的力学性能

    Table  4   Mechanical properties of BACy-C and PM915-C

    PropertyBACy-CPM915-C
    Flexural strength/MPa 97.2 139.3
    Flexural modulus/GPa 3.7 4.2
    Tensile strength/MPa 75.8
    Tensile modulus/GPa 3.8
    Elongation/% 2.1
    下载: 导出CSV
  • [1]

    YUAN L, HUANG S, HU Y, et al. Poly(phenylene oxide) modified cyanate resin for self-healing[J]. Polymers for Advanced Technologies,2014,25:752-759. DOI: 10.1002/pat.3290

    [2]

    ARAO Y, FUKUI T, NIWA T, et al. Dimensional stability of epoxy-based and cyanate-based carbon fiber-reinforced plastics[J]. Journal of Composite Materials,2015,49:1483-1492. DOI: 10.1177/0021998314535455

    [3] 刘锋, 周恒, 赵彤. 高性能树脂基体的最新研究进展[J]. 宇航材料工艺, 2012, 42:1-6. DOI: 10.3969/j.issn.1007-2330.2012.03.001

    LIU Feng, ZHOU Heng, ZHAO Tong. Progress of high-performance thermosetting resins[J]. Aerospace Materials & Technology,2012,42:1-6(in Chinese). DOI: 10.3969/j.issn.1007-2330.2012.03.001

    [4]

    INAMDAR A, CHERUKATTU J, ANAND A, et al. Thermoplastic-toughened high-temperature cyanate esters and their application in advanced composites[J]. Industrial & Engineering Chemistry Research,2018,57:4479-4504.

    [5] 宋健朗. 先进聚合物基结构复合材料在导弹和航天中的应用[J]. 工程塑料应用, 2008(7):50-54. DOI: 10.3969/j.issn.1001-3539.2008.07.014

    SONG Jianlang. Application of advanced polymer matrix composites in missle and aerospace[J]. Engineering Plastics Application,2008(7):50-54(in Chinese). DOI: 10.3969/j.issn.1001-3539.2008.07.014

    [6] 余训章. 高性能树脂基体在航空航天复合材料上的应用[J]. 玻璃钢, 2006(4):14-17.

    YU Xunzhang. The application of high performance resin on aeronautical and spacecraft composites[J]. Fiber Reinforced Plastics,2006(4):14-17(in Chinese).

    [7]

    GUAN Q B, GU A J, LIANG G Z, et al. Curing kinetics and mechanism of novel high performance hyperbranched polysiloxane/bismaleimide/cyanate ester resins for resin transfer molding[J]. Journal of Applied Polymer Science,2011,122:304-312. DOI: 10.1002/app.34073

    [8]

    HE S B, LIANG G Z, YAN H X, et al. High performance toughened cyanate ester resin with low injection temperature for RTM process[J]. Polymers for Advanced Technologies,2009,20:143-146. DOI: 10.1002/pat.1291

    [9] 赵臻璐, 钟成, 黎昱, 等. POSS催化剂改性氰酸酯复合材料的性能[J]. 宇航材料工艺, 2014, 44:44-45, 49. DOI: 10.3969/j.issn.1007-2330.2014.04.008

    ZHAO Zhenlu, ZHONG Cheng, LI Yu, et al. Character of cyanate ester composite modified by POSS[J]. Aerospace Materials & Technology,2014,44:44-45, 49(in Chinese). DOI: 10.3969/j.issn.1007-2330.2014.04.008

    [10]

    HAN B J, JEONG Y C, KIM C M, et al. Forming characteristics during the high-pressure resin transfer molding process for CFRP[J]. Advanced Composite Materials,2019,28:365-382. DOI: 10.1080/09243046.2018.1556236

    [11]

    MAJI P, NEOGI S. Development of kinetics sub-model of cyanate ester-based prepregs for autoclave molding process simulation[J]. High Temperature Materials and Processes,2018(8):769-776.

    [12]

    FAINLEIB A, GRIGORYEVA O, VASHCHUK A, et al. Effect of ionic liquids on kinetic parameters of dicyanate ester polycyclotrimerization and on thermal and viscoelastic properties of resulting cyanate ester resins[J]. Express Polymer Letters,2019,13(5):469-483. DOI: 10.3144/expresspolymlett.2019.39

    [13] 田文平. 氰酸酯树脂改性及其碳纤维复合材料的性能研究[D]. 南京: 南京航空航天大学, 2016.

    TIAN Wenping. Study on properties of modified cyanate resin and its carbon fiber composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).

    [14] 韩成智, 张艺萌, 凌辉, 等. 热熔预浸料预浸工艺研究[J]. 玻璃钢/复合材料, 2014(5):59-63. DOI: 10.3969/j.issn.1003-0999.2014.01.013

    HAN Chengzhi, ZHANG Yimeng, LING Hui, et al. Study on the preimpregnation process of hot-melt prepreg[J]. Fiber Reinforced Plastics/Composites,2014(5):59-63(in Chinese). DOI: 10.3969/j.issn.1003-0999.2014.01.013

    [15] 徐燕, 李炜. 国内外预浸料制备方法[J]. 玻璃钢/复合材料, 2013(Z3):3-7. DOI: 10.3969/j.issn.1003-0999.2013.01.001

    XU Yan, LI Wei. Manufacturing methods of prepreg material[J]. Fiber Reinforced Plastics/Composites,2013(Z3):3-7(in Chinese). DOI: 10.3969/j.issn.1003-0999.2013.01.001

    [16] 王大伟, 林凤森, 黄海超. 适用于热熔法预浸料生产氰酸酯树脂的制备[J]. 化工新型材料, 2019, 47:233-234, 242.

    WANG Dawei, LIN Fengsen, HUANG Haichao. Preparation of cyanate resin for the production of melting prepared prepreg[J]. New Chemical Materials,2019,47:233-234, 242(in Chinese).

    [17]

    LI X D, ZHOU F, ZHENG T, et al. Blends of cyanate ester and phthalonitrile-polyhedral oligomeric silsesquioxane copolymers: Cure behavior and properties[J]. Polymers,2019,11(1):54.

    [18] 姜雪, 刘锋, 雷子萱, 等. 热熔预浸工艺及热熔热固性树脂的研究进展[J]. 材料导报, 2017, 31:94-100. DOI: 10.11896/j.issn.1005-023X.2017.04.021

    JIANG Xue, LIU Feng, LEI Zixuan, et al. Advances in hot-melt thermosetting resin and its prepreg technology[J]. Materials Reports,2017,31:94-100(in Chinese). DOI: 10.11896/j.issn.1005-023X.2017.04.021

    [19] 王磊, 林娜, 潘玲英, 等. 新型改性氰酸酯及其复合材料性能[J]. 宇航材料工艺, 2012, 42:45-46, 50. DOI: 10.3969/j.issn.1007-2330.2012.04.010

    WANG Lei, LIN Na, PAN Lingying, et al. Performance of a new type of cyanate ester resin and composite materials[J]. Aerospace Materials & Technology,2012,42:45-46, 50(in Chinese). DOI: 10.3969/j.issn.1007-2330.2012.04.010

    [20]

    CAI M C, YUAN Q L, HUANG F R. Catalytic effect of poly(silicon-containing arylacetylene) with terminal acetylene on the curing reaction and properties of a bisphenol A type cyanate ester[J]. Polymer International,2018,67:1563-1571. DOI: 10.1002/pi.5679

    [21] 杨依依, 王晓洁, 刘锋, 等. 氰酸酯MCE-085树脂固化行为和浇铸体性能研究[J]. 化工新型材料, 2018, 46:36-39.

    YANG Yiyi, WANG Xiaojie, LIU Feng, et al. Curing behavior and casting property of MCE-085 cyanate ester[J]. New Chemical Materials,2018,46:36-39(in Chinese).

    [22] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting body: GB/T 2567—2008[S]. Beijing: China Standards Press, 2009(in Chinese).

    [23] 党凯. 高模碳纤维预浸料用氰酸酯树脂体系的研制[D]. 北京: 北京化工大学, 2017.

    DANG Kai. The research on cyanate ester resin system for high modulus carbon fiber prepreg[D]. Beijing: Beijing University Of Chemical Technology, 2017(in Chinese).

    [24] 王冠. 液氧环境用改性氰酸酯树脂体系的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WANG Guan. Preparation and investigation of modified cyanate ester resin systems used in liquid oxygen[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).

    [25] 黄智勇, 崔宝军, 陈维君, 等. 酚酞基聚芳醚砜改性双酚A型氰酸酯预聚体的制备及性能研究[J]. 化学与黏合, 2013, 35:22-26.

    HUANG Zhiyong, CUI Baojun, CHEN Weijun, et al. Preparation and study on the property of bisphenol A cyanate prepolymer modified with polyarylethersulfone with cardo group[J]. Chemistry and Adhesion,2013,35:22-26(in Chinese).

    [26]

    IIJIMA T, KATSURAYAMA S, FUKUDA W, et al. Modification of cyanate ester resin by poly(ethylene phthalate) and related copolyesters[J]. Journal of Applied Polymer Science,2000,76:208-219. DOI: 10.1002/(SICI)1097-4628(20000411)76:2<208::AID-APP10>3.0.CO;2-N

    [27] 颜红侠, 梁国正, 马晓燕, 等. 聚苯醚改性氰酸酯树脂的研究[J]. 西北工业大学学报, 2004, 22(3):301-303. DOI: 10.3969/j.issn.1000-2758.2004.03.009

    YAN Hongxia, LIANG Guozheng, MA Xiaoyan, et al. Study on cyanate ester resin modified with polyphenylene oxide[J]. Journal of Northwestern Polytechnical University,2004,22(3):301-303(in Chinese). DOI: 10.3969/j.issn.1000-2758.2004.03.009

  • 期刊类型引用(2)

    1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
    2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术

    其他类型引用(1)

图(8)  /  表(4)
计量
  • 文章访问数:  1335
  • HTML全文浏览量:  304
  • PDF下载量:  133
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-02-09
  • 录用日期:  2020-04-24
  • 网络出版日期:  2020-05-06
  • 刊出日期:  2020-12-14

目录

/

返回文章
返回