留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2/静电纺PAN基碳复合材料的制备及光催化性能

于翔 张雪寅 李如洋 赵亚浩 卢晓龙

于翔, 张雪寅, 李如洋, 等. TiO2/静电纺PAN基碳复合材料的制备及光催化性能[J]. 复合材料学报, 2020, 37(12): 3177-3183. doi: 10.13801/j.cnki.fhclxb.20200429.001
引用本文: 于翔, 张雪寅, 李如洋, 等. TiO2/静电纺PAN基碳复合材料的制备及光催化性能[J]. 复合材料学报, 2020, 37(12): 3177-3183. doi: 10.13801/j.cnki.fhclxb.20200429.001
YU Xiang, ZHANG Xueyin, LI Ruyang, et al. Preparation and photocatalytic properties of TiO2/electrospinning PAN-based carbon composite material[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3177-3183. doi: 10.13801/j.cnki.fhclxb.20200429.001
Citation: YU Xiang, ZHANG Xueyin, LI Ruyang, et al. Preparation and photocatalytic properties of TiO2/electrospinning PAN-based carbon composite material[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3177-3183. doi: 10.13801/j.cnki.fhclxb.20200429.001

TiO2/静电纺PAN基碳复合材料的制备及光催化性能

doi: 10.13801/j.cnki.fhclxb.20200429.001
详细信息
    通讯作者:

    卢晓龙,硕士研究生,研究方向为高分子材料加工与改性,光催化剂改性 E-mail:lxlpolymer@sina.com

  • 中图分类号: TB332

Preparation and photocatalytic properties of TiO2/electrospinning PAN-based carbon composite material

  • 摘要: 为了同时提高催化剂的光催化和回收能力,以聚丙烯腈(PAN)和钛酸四丁酯(TBT)作为碳纳米纤维(CNFs)和TiO2前驱体,通过静电纺丝和热处理方法制备了TiO2/CNFs复合材料,并通过SEM、XRD、Raman、UV-vis分光光度计等对TiO2/CNFs复合材料的形貌、晶体结构、光吸收性能、导电性和光催化性能进行了研究。结果表明:随TBT添加量的逐渐增多,TiO2/CNFs复合材料在热处理过程中卷曲形态逐渐消失,并且TBT在碳化过程中完全转化为锐钛矿TiO2;TiO2/CNFs复合材料光吸收边缘由纯TiO2的紫外光区扩展至可见光区,提高了催化剂对太阳光的利用率;同时,在模拟太阳光照射180 min,TiO2/CNFs复合材料对RhB的光催化降解率最大可达到95.71%,并且在连续重复使用5次后光催化降解效率仍可达到约90%。

     

  • 图  1  不同TBT添加量的钛酸四丁酯 (TBT)/聚丙烯腈 (PAN) 复合材料((a)~(d))和不同TiO2含量的TiO2/CNFs复合材料的SEM图像((e)~(h)

    Figure  1.  SEM images of TBT/PAN composite with different TBT additions ((a)-(d)) and TiO2/CNFs composite with different TiO2 contents((e)-(h)) ((a)PAN; (b)TBT/PAN-1; (c)TBT/PAN-2; (d)TBT/PAN-3; (e)CNF; (f)TiO2/CNFs-1-47.06%; (g)TiO2/CNFs-2-94.12%; (h)TiO2/CNFs-3-125.49%)

    图  2  不同TiO2质量比的TiO2/CNFs复合材料的XRD图谱

    Figure  2.  XRD patterns of TiO2/CNFs composites with different TiO2 contents

    图  3  不同TiO2含量的TiO2/CNFs复合材料Raman光谱

    Figure  3.  Raman spectra of TiO2/CNFs composites with different TiO2 contents

    图  4  不同TiO2含量的TiO2/CNFs复合材料UV-vis漫反射光谱

    Figure  4.  UV-vis diffuse reflectance spectra of TiO2/CNFs composites with different TiO2 contents

    图  5  不同TiO2含量的TiO2/CNFs复合材料电化学阻抗分析图(a)和图5(a)中红色方框标记放大图(b)

    Figure  5.  Electrochemical impedance analysis spectroscopy of TiO2/CNFs composites with different TiO2 contents (a) and enlarged red box mark in fig. 5(a) (b)

    图  6  不同TiO2含量的TiO2/CNFs复合材料光催化降解图

    Figure  6.  Photocatalytic degradation analysis diagrams of TiO2/CNFs composites with different TiO2 contents ((a) Plots of relative concentration of RhB(C/C0) versus time (t); (b) Photocatalytic degradation kinetics curve; (c) Photocatalytic kinetics constant; (d) Cyclic degradation curve of TiO2/CNFs-2-94.12%)

    表  1  TiO2/碳纳米管(CNFs)复合材料成分

    Table  1.   Composition of TiO2/ carbon-nanofibers (CNFs) composite

    Sample
    number
    Mass ratio of
    TBT:PAN
    Mass ratio of
    TiO2:CNFs/%
    CNFs 0 0
    TiO2/CNFs-1-47.06% 1∶1 47.06
    TiO2/CNFs-2-94.12% 2∶1 94.12
    TiO2/CNFs-3-125.49% 3∶1 125.49
    Notes: TiO2/CNFs-a-b: a—Mass ratio of tetrabutyltitanate (TBT) to polyacrylonitrile (PAN) in TBT/PAN composite; b—Mass ratio of TiO2 to CNFs in TiO2/CNFs composite.
    下载: 导出CSV

    表  2  不同TiO2含量的TiO2/CNFs复合材料Raman特征峰强度数据

    Table  2.   Data of Raman characteristic peak intensity of TiO2/CNFs composites with different TiO2 contents

    TiO2 content/%IDIGID/IG
    0 570.7 463.2 1.232
    47.06 498.4 409.7 1.216
    94.12 441.4 408.5 1.081
    125.49 307.8 260.3 1.182
    Notes: ID—D band strength; IG—G band strength.
    下载: 导出CSV
  • [1] 潘会, 胡轶, 兀晓文, 等. ZnO/CNTs复合材料的制备、表征及光催化性能[J]. 材料导报, 2018, 32(24):4224-4229. doi: 10.11896/j.issn.1005-023X.2018.24.003

    PAN Hui, HU Yi, WU Xiaowen, et al. Preparation, characterization and photocatalytic properties of ZnO/CNTs composites[J]. Materials Reports,2018,32(24):4224-4229(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.24.003
    [2] LIU X F, XING Z P, ZHANG Y, et al. Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance[J]. Applied Catalysis B: Environmental,2017,201:119-127. doi: 10.1016/j.apcatb.2016.08.031
    [3] 吴奕初. WO3/BiVO4复合光阳极光催化分解水性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WU Yichu. WO3/BiVO4 composite photoanodes for photoelectrochemical water splitting[J]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [4] 董双石, 程汉卿, 邓贝奇, 等. Bi与rGO共修饰SnO2光催化高效降解TCH和染料研究[J]. 安全与环境学报, 2019, 19(3):992-1002.

    DONG Shuangshi, CHENG Hanqing, DENG Beiqi, et al. Photocatalytic degradation of TCH and dyes by bismuth and reduced graphene oxide co-modified SnO2[J]. Journal of Safety and Environment,2019,19(3):992-1002(in Chinese).
    [5] CAO X R, TIAN G H, CHEN Y J, et al. Hierarchical compo-sites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance[J]. Journal of Materials Chemistry A,2014,2:4366-4374. doi: 10.1039/C3TA14272H
    [6] KANG Q, WANG T, LI P, et al. Photocatalytic reduction of carbon dioxide by Hydrous Hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays[J]. Angewandte Chemie International Edition,2014,54(3):841-845.
    [7] 费锡智, 杨晶晶, 白仁碧. 光催化-膜分离耦合技术的水处理应用研究进展[J]. 水处理技术, 2014(12):11-18.

    FEI Xizhi, YANG Jingjing, BAI Renbi. Progress of combined photocatalytic and membrane separation technologies for the application of water treatment[J]. Technology of Water Treatment,2014(12):11-18(in Chinese).
    [8] QIU J L, LIU F Q, YUE C L, et al. A recyclable nanosheet of Mo/N-doped TiO2 nanorods decorated on carbon nanofibers for organic pollutants degradation under simulated sunlight irradiation[J]. Chemosphere,2019,215:280-293. doi: 10.1016/j.chemosphere.2018.09.182
    [9] 张梦媛, 黄庆林, 黄岩, 等. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(9):1-7.

    ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly (tetrafluoroethylene) /TiO2 photocatalytic nanofiber membrane and its application[J]. Journal of Textile Research,2019,40(9):1-7(in Chinese).
    [10] LEE C G, JAVED H, ZHANG D N, et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants.[J]. Environmental Science & Technology,2018,52(7):4285-4293.
    [11] 拓晓. 负载纳米二氧化钛织物在可见光下降解甲醛气体的研究[D]. 天津: 天津工业大学, 2015.

    TUO Xiao. Study on the degradation of formaldehyde in visible light by nanotitalia loaded fabric[D]. Tianjin: Tianjin Polytechnic University, 2015(in Chinese).
    [12] 陈星. TiO2@GO@C纳米纤维膜的制备及其光催化性能和机械性能的研究[D]. 太原: 太原理工大学, 2019.

    CHEN Xing. Preparation of TiO2@GO@C nanofiber membrane and study on its photocatalytic and mechanical properties[D]. Taiyuan: Taiyuan University of Technology, 2019(in Chinese).
    [13] WANG H, HUANG X W, LI W, et al. TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,549:205-211.
    [14] LIANG Y H, ZHOU B M, LI N, et al. Enhanced dye photocatalysis and recycling abilities of semi-wrapped TiO2@ carbon nanofibers formed via foaming agent driving[J]. Ceramics International,2018,44(2):1711-1718. doi: 10.1016/j.ceramint.2017.10.101
    [15] YUSOF N, ISMAIL A F. Post spinning and pyrolysis processes of polyacrylonitrilr (PAN)-based carbon fiber and activated carbon fiber: A review[J]. Journal of Analytical and Applied Pyrolysis,2012,93:1-13. doi: 10.1016/j.jaap.2011.10.001
    [16] MARSH H, WARBURTON A P. Catalytic graphitization of carbon using titanium and zirconium[J]. Carbon,1976,14(1):47-52. doi: 10.1016/0008-6223(76)90082-8
    [17] TENG W, WANG Y M, HUANG H H, et al. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition[J]. Applied Surface Science,2017,425:507-517. doi: 10.1016/j.apsusc.2017.06.297
    [18] SHAO J, SHENG W C, WANG M S, et al. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency[J]. Applied Catalysis B: Environmental,2017,209:311-319. doi: 10.1016/j.apcatb.2017.03.008
    [19] GE G, LIU M, LIU C, et al. Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation[J]. Journal of Materials Chemistry A,2019,7:9222-9229. doi: 10.1039/C9TA01740B
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  325
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 录用日期:  2020-03-31
  • 网络出版日期:  2020-04-29
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回