Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh
-
摘要: 为了研究高强不锈钢绞线网增强工程水泥基复合材料(Engineered cementitious composites,EEC)的受拉性能,考虑高强不锈钢绞线配筋率、ECC抗拉强度、高强不锈钢绞线网增强ECC试件宽度3个影响因素,对设计的27个高强不锈钢绞线网增强ECC试件进行了单轴拉伸试验。试验结果表明,高强不锈钢绞线网增强ECC受拉试件的开裂应力和极限应力随着钢绞线配筋率、ECC抗拉强度的增大而增大;增大试件宽度对试件的开裂应力和极限应力几乎无影响。基于试验结果,提出并建立了高强不锈钢绞线网增强ECC受拉本构模型,推导了开裂应力和极限应力计算公式。经验证,计算结果与试验结果吻合良好,说明所建立的受拉本构模型可准确描述高强不锈钢绞线网增强ECC的受拉应力-应变关系。
-
关键词:
- 高强不锈钢绞线网增强工程水泥基复合材料 /
- 应力-应变关系 /
- 本构模型 /
- 拉伸性能 /
- 试验
Abstract: In order to study the tensile performance of the engineered cementitious composites (EEC) reinforced by high high-strength stainless steel wire mesh, the parameters of reinforcement ratio of high-strength stainless steel stranded wire, tensile strength of ECC and width of ECC reinforced by high high-strength stainless steel wire mesh specimen were considered, and the uniaxial tensile tests of total of 27 test pieces were carried out. The test results show that the cracking stress and ultimate stress of the specimens increase with the increase of the steel strand reinforcement ratio and ECC tensile strength. The crack stress and ultimate stress of the specimens are almost not affected by increasing the width of the specimen. Based on the test results, the tensile constitutive model of high-strength stainless steel stranded wire mesh reinforced ECC and the formulas for calculating the cracking stress and ultimate stress were proposed. It is proved that the calculated results are in good agreement with the experimental results, which indicates that the established tensile constitutive model can accurately describe the tensile stress-strain relationship of ECC reinforced by high-strength stainless steel wire mesh. -
表 1 高强不锈钢绞线网增强工程水泥基复合材料(ECC)试件参数
Table 1. Parameters of engineered cementitious composites(ECC) reinforced by high-strength stainless steel wire mesh specimens
Group number Test section width bc /mm Steel strand spacing/mm Reinforcement ratio of steel strand TC12 80 50 0.0028 TC22 70 40 0.0032 TC32 60 30 0.0037 TC42 50 20 0.0048 TC52 90 30 0.0037 TD12 80 50 0.0028 TD22 70 40 0.0032 TD32 60 30 0.0037 TD42 50 20 0.0048 表 2 ECC受拉试验结果
Table 2. Tensile test results of ECC
Group number Tensile strength/MPa Ultimate tensile strain Cracking stress/MPa Cracking strain TC12 3.53 0.0179 2.45 0.000204 TC22 3.53 0.0179 2.45 0.000204 TC32 3.53 0.0179 2.45 0.000204 TC42 3.53 0.0179 2.45 0.000204 TC52 3.53 0.0179 2.45 0.000204 TD12 3.46 0.0297 2.39 0.000189 TD22 3.46 0.0297 2.39 0.000189 TD32 3.46 0.0297 2.39 0.000189 TD42 3.46 0.0297 2.39 0.000189 表 3 高强不锈钢绞线网增强ECC试件拉伸试验结果
Table 3. Tensile test results of ECC reinforced by high-strength stainless steel wire mesh specimens
Group number Cracking stress/MPa Cracking strain Ultimate tensile stress/MPa Ultimate tensile strain Elastic modulus/MPa TC12 2.20 0.000156 7.09 0.030874 14 471 TC22 2.25 0.000162 7.94 0.034056 14 122 TC32 2.41 0.000171 8.77 0.030581 14 492 TC42 2.56 0.000182 10.65 0.034815 14 578 TC52 2.54 0.000181 8.82 0.033683 14 642 TD12 1.97 0.000145 6.41 0.031929 14 216 TD22 1.99 0.000149 7.81 0.043660 14 727 TD32 2.07 0.000139 8.62 0.041116 14 460 TD42 2.19 0.000159 10.30 0.035051 14 496 表 4 高强不锈钢绞线应力发挥系数γ取值
Table 4. Value of stress development coefficient γ of high-strength stainless steel strand
Group number γ R2 TC12 0.73 0.9267 TC22 0.72 0.9459 TC32 0.76 0.9607 TD12 0.71 0.9157 TD22 0.72 0.9755 TD32 0.71 0.9325 表 5 试验与式(6)计算得到的高强不锈钢绞线网增强ECC试件开裂应力和极限应力的对比
Table 5. Comparison of cracking stress and ultimate tensile stress of ECC reinforced by high-strength stainless steel wire mesh specimens obtained by test and equation (6)
Group number Cracking stress/MPa Ultimate tensile stress/MPa T C R T C R TC12 2.20 2.26 0.97 7.09 6.79 1.04 TC22 2.25 2.27 0.99 7.94 7.25 1.10 TC32 2.41 2.28 1.06 8.77 7.87 1.11 TC42 2.56 2.30 1.11 10.65 9.19 1.16 TC52 2.54 2.28 1.11 8.82 7.87 1.12 TD12 1.97 1.94 1.01 6.41 6.58 0.97 TD22 1.99 1.95 1.02 7.81 7.03 1.11 TD32 2.07 1.96 1.06 8.62 7.63 1.13 TD42 2.19 1.98 1.11 10.30 8.90 1.16 Notes: T—Test value; C—Calculated value; R—T/C. -
[1] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composite[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246) [2] LI V C, STANG H, KRENCHEL H. Micromechanics of crack bridging in fibre-reinforced concrete[J]. Materials & Structures,1993,26(8):486-494. [3] 徐世烺 , 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42(9):32-41. doi: 10.3321/j.issn:1000-131X.2009.09.005XU Shilang, LI Hedong. Uniaxial tensile experiments of ultra-high toughness cementitious composite[J]. China Civil Engineering Journal,2009,42(9):32-41(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.09.005 [4] 蔡向荣. 超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D]. 大连: 大连理工大学, 2010.CAI Xiangrong. The basic mechanical performance and strain hardening process theoretical analysis of ultra high toughness cementitious composites[D]. Dalian: Dalian University of Technology, 2010(in Chinese). [5] 刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州: 郑州大学, 2018.LIU Weikang. Study on the compression and tensile properties and the constitutive model of ECC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese). [6] 王新玲, 李苗浩夫, 李可. ECC圆柱体轴心受压性能试验研究[J]. 建筑科学, 2019, 35(5):59-63.WANG Xinling, LI Miaohaofu, LI Ke. Experimental research on the axial compression performance of ECC cylinders[J]. Building Science,2019,35(5):59-63(in Chinese). [7] 李艳, 刘泽军. 高韧性PVA-FRCC单轴受压力学性能及本构关系[J]. 建筑材料学报, 2014, 17(4):606-612. doi: 10.3969/j.issn.1007-9629.2014.04.008LI Yan, LIU Zejun. Study on mechanical performance and constitutive equation of high toughness PVA-FRCC under uniaxial compression[J]. Journal of Building Materials,2014,17(4):606-612(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.04.008 [8] SUTHIWARAPIRAK P, MATSUMOTO T, KANDA T. Flexural fatigue failure characteristics of an engineered cementitious composite and polymer cement mortars[J]. Journal of materials, concrete structures and pavements,2002,718(718):121-134. [9] FISCHER G, LI V C. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineering cementitious composites (ECC)[J]. ACI Structural Journal,2002,99(1):104-114. [10] MIHASHI H, OTSUKA K, AKITA H, et al. Bond behavior of a deformed bar in high-performance fiber-reinforced cement composites (HPFRCC)[C]//11th International Conference on Fracture, 2005, 2: 1494-1499. [11] 郑宇宙, 王文炜, 李剑锋, 等. 复材格栅-高延性纤维水泥基受拉本构关系模型[J]. 工业建筑, 2016, 46(5):12-17.ZHENG Yuzhou, WANG Wenwei, LI Jianfeng, et al. The constitutive relationship model of ECC composite strengthened with FRP grid under axial loading[J]. Industrial Construction,2016,46(5):12-17(in Chinese). [12] 朱忠锋, 王文炜. 玄武岩格栅增强水泥基复合材料单轴拉伸力学性能试验及本构关系模型[J]. 复合材料学报, 2017, 34(10):2367-2374.ZHU Zhongfeng, WANG Wenwei. Experiment on the uniaxial tensile mechanical behavior of basalt grid reinforced engineered cementitious composites and its constitutive model[J]. Acta Materiae Compositae Sinica,2017,34(10):2367-2374(in Chinese). [13] 聂建国, 王寒冰, 张天申, 等. 高强不锈绞线网-渗透性聚合砂浆抗弯加固的试验研究[J]. 建筑结构学报, 2005, 26(2):1-9. doi: 10.3321/j.issn:1000-6869.2005.02.001NIE Jianguo, WANG Hanbing, ZHANG Tianshen, et al. Experimental study on flexural behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar[J]. Journal of Building Structures,2005,26(2):1-9(in Chinese). doi: 10.3321/j.issn:1000-6869.2005.02.001 [14] 胡新舒. 高强钢绞线加固钢筋混凝土梁抗弯疲劳性能的试验研究[D]. 北京: 清华大学, 2004.HU Xinshu. Experimental study on bending fatigue behavior of RC beams strengthened by stainless steel wires[D]. Beijing: Tsinghua University, 2004(in Chinese). [15] 林于东, 宗周红, 林秋峰. 高强钢绞线网-聚合物砂浆加固混凝土及预应力混凝土梁的抗弯性能试验研究[J]. 工程力学, 2012, 29(9):141-149.LIN Yudong, ZONG Zhouhong, LIN Qiufeng. Experiment study on flexural behavior of RC/PRC beams strengthened with high strength steel wire mesh and permeable polymer mortar[J]. Engineering Mechanics,2012,29(9):141-149(in Chinese). [16] 郭瑞, 蔡联亨, 潘毅, 等. 聚合物水泥砂浆-碳纤维网格加固层与混凝土界面的黏结性能试验研究[J]. 建筑结构学报, 2018, 39(9):167-174.GUO Rui, CAI Lianheng, PAN Yi, et al. Experimental study on bonding behavior of interface between concrete and CFRP grid-PCM[J]. Journal of Building Structures,2018,39(9):167-174(in Chinese). [17] 聂建国, 蔡奇, 张天申, 等. 高强不锈钢网-渗透性聚合砂浆抗剪加固的试验研究[J]. 建筑结构学报, 2005, 26(2):10-17. doi: 10.3321/j.issn:1000-6869.2005.02.002NIE Jianguo, CAI Qi, ZHANG Tianshen, et al. Experimental study on shear behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar[J]. Journal of Building Structures,2005,26(2):10-17(in Chinese). doi: 10.3321/j.issn:1000-6869.2005.02.002 [18] 王亚勇, 姚秋来, 巩正光, 等. 高强钢绞网-聚合物砂浆在郑成功纪念馆加固工程的应用[J]. 建筑结构, 2005, 35(8):41-42.WANG Yayong, YAO Qiulai, GONG Zhengguang, et al. Application of strengthened technology by composite cover combined with high strength wire cable mesh and polymeric mortar in Zheng Chenggong memorial strengthening engineering[J]. Building Structure,2005,35(8):41-42(in Chinese). [19] 王大愚, 仝胜强, 朱同然, 等. 中国美术馆加固改造综合施工技术[J]. 施工技术, 2009, 38(6):60-62.WANG Dayu, TONG Shengqiang, ZHU Tongran, et al. Comprehensive construction technology of reinforcement and reconstruction in China Art Gallery[J]. Construction Technology,2009,38(6):60-62(in Chinese). [20] 朱俊涛, 李燚 , 王新玲. 考虑横向钢绞线影响的钢绞线网/工程水泥基复合材料黏结性能试验研究[J]. 工业建筑, 2018, 48(11):143-148.ZHU Juntao, LI Yi, WANG Xinling. Experimental study on bonding performance of stainless steel wire mesh/ECC with horizontal steel wire[J]. Industrial Construction,2018,48(11):143-148(in Chinese). [21] 周擎威. 高强不锈钢绞线与ECC粘结锚固性能试验研究[D]. 郑州: 郑州大学, 2018.ZHOU Qingwei. Experimental study on bonding performance of high-strength stainless steel stranded wire and ECC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese). [22] 朱俊涛, 赵亚楼, 李燚, 等. 高强不锈钢绞线网与工程水泥基复合材料粘结锚固性能试验[J]. 复合材料学报, 2020, 37(7):1731-1742.ZHU Juntao, ZHAO Yalou, LI Yi, et al. Experiment on bonding and anchoring performance between high-strength stainless steel wire mesh and engineered cementitious composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1731-1742(in Chinese). [23] 中华人民共和国住房和城乡建筑部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).