Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface
-
摘要: 以聚对苯二甲酸乙二醇酯(PET)滤料为基体材料,正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为改性剂,采用溶胶-凝胶法,制备超疏水性PET滤料。在此基础上,采用场发射扫描电子显微镜(FESEM-EDS)、傅里叶变换红外光谱仪(FTIR)和接触角测试仪研究PET滤料改性前后的微观形貌、表面组成以及接触角等参数。研究表明:改性前后滤料微观孔隙率基本不变,TEOS改性的PET(T-PET)滤料由于形成大量亲水性的—OH基团,呈现完全润湿性;MTES改性的PET(M-PET)滤料表面存在疏水性的—CH3基团,呈现高疏水性;TEOS和MTES共同改性的PET (MT-PET)滤料表面由于大量疏水性的—CH3基团,且有大量的含有—CH3基团SiO2纳米粒子沉积在纤维表面,降低了滤料表面能,形成纳米级粗糙、褶皱甚至凸起形态;MT-PET的静态接触角(WCA)为(158.8±1.2)°,流失角(WSA)为(6.9±1.5)°,达到超疏水状态。此外,通过喷涂湿粉尘和水中浸泡(室温)滤料对比试验,表明MT-PET滤料具有良好的自清洁性能与稳定性。综上,本文中MT-PET超疏水滤料的制备,对于高湿环境下的袋式除尘材料的研究开发具有潜在价值。
-
关键词:
- 聚对苯二甲酸乙二醇酯滤料 /
- 超疏水 /
- 溶胶-凝胶法 /
- 高湿环境 /
- 自清洁性能
Abstract: Superhydrophobic polyethylene terephthalate (PET) filter was prepared by sol-gel method with PET filter as matrix material, tetraethyl orthosilicate (TEOS) and methyl triethoxysilane (MTES) as modifiers. Field emission scanning electron microscopy (FESEM-EDS), Fourier transform infrared spectrometer (FTIR) and contact angle measurement were introduced to investigate the micro morphology, surface composition and contact angle of PET filter material before and after modification. The results show that the porosity of the filter material is slightly changed after modification. TEOS-modified PET (T-PET) filter material shows superhydrophilic due to the formation of a large numbers of hydrophilic —OH groups. On the contrary, hydrophobic —CH3 groups are existed on the surface of MTES modified PET (M-PET) filter material, which endows high hydrophobicity. Moreover, TEOS and MTES modified PET (MT-PET) filter material displays superhydrophobicity due to lots of SiO2 nanoparticles covered by —CH3 groups are deposited on the fiber surface, reducing the surface energy of the filter material and forming micro-nano, wrinkled and even convex structure. MT-PET presents static contact angle (WCA) of (158.8±1.2)° with water shedding angle (WSA) of (6.9±1.5)°, indicating superhydrophobic state of MT-PET filter material. In addition, through the contrast test of spraying wet dust and soaking filter material in water (room temperature), it shows that MT-PET filter material has good self-cleaning performance and stability. In conclusion, the preparation of superhydrophobic MT-PET filter material in this paper has potential value for the research and development of bag filter material in high humidity environment. -
表 1 不同改性剂添加量时PET滤料的具体配方
Table 1. Formulation of PET filter with different modifiers loading
Sample PET/g TEOS/g MTES/g Polyethylene terephthalate (PET) 1.0 0 0 TEOS-modified PET (T-PET) 1.0 4.0 0 MTES-modified PET (M-PET) 1.0 0 4.0 TEOS and MTES modified PET (MT-PET) 1.0 2.5 1.5 Notes: TEOS—Tetraethyl orthosilicate; MTES—Methyl triethoxysilane. 表 2 不同改性剂添加量时PET滤料产物的EDS元素成分
Table 2. EDS element content of PET filter products with different modifier additions
wt% Sample PET T-PET M-PET MT-PET Element C 66.18 61.94 78.25 73.28 O 33.82 33.58 18.29 19.78 Si 0 4.48 3.46 9.94 表 3 不同改性剂添加量时PET滤料产物的静态接触角(WCA)和水流失角(WSA)
Table 3. Water contact angle(WCA) and water shedding angle (WSA) of PET filter products with different modifier additions
Sample WCA /(º) WSA/(º) PET 119.7±2.8 20.5±1.7 T-PET 0 − M-PET 138.6±1.6 15.6±1.7 MT-PET 158.8±1.4 6.9±1.2 表 4 不同湿度粉尘对PET和MT-PET滤料WCA的影响
Table 4. Effect of dust with different humidity on WCA of PET and MT-PET filter material
Sample Humidity of dust/% WCA/(°) PET 6 109.7±2.5 9 102.6±2.1 12 86.8±1.6 MT-PET 6 156.6±1.4 9 153.9±1.8 12 151.1±1.6 -
[1] ZHAO Q, YAO W, ZHANG C, et al. Study on the influence of fog and haze on solar radiation based on scattering-weakening effect[J]. Renewable Energy,2019,134:178-185. doi: 10.1016/j.renene.2018.11.027 [2] LI H, WANG Q, SHAO M, et al. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China[J]. Environmental Pollution,2016,208:655-662. doi: 10.1016/j.envpol.2015.10.042 [3] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM 2.5 capture[J]. Nature Communications,2015,6(1):1-9. [4] GU Y L, CHEN C Z, GU X J. Research on high temperature fume control technology of bag house dusting[J]. Heavy Machinery,2015(2):17-21. [5] 郭颖赫, 赫伟东, 柳静献. 聚对苯二甲酸乙二醇酯纳米纤维膜/涤纶针刺毡过滤复合材料的制备及性能[J]. 复合材料学报, 2019, 36(3):572-577.GUO Y H, HE W D, LIU J X. Preparation and characterization of polyethylene terephthalate nanofiber membrane/polyester needle felt composite filters[J]. Acta Materiae Compositae Sinica,2019,36(3):572-577(in Chinese). [6] KORTA J, MLYNIEC A, UHL T. Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints[J]. Composites Part B: Engineering,2015,79:621-630. doi: 10.1016/j.compositesb.2015.05.020 [7] KHOMWACHIRAKUL P, DEVAHASTIN S, SWASDISEVI T, et al. Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM[J]. Drying Technology,2016,34(4):403-419. doi: 10.1080/07373937.2015.1081930 [8] SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature,2015,527(7576):82-85. doi: 10.1038/nature15738 [9] ZHANG S, HUANG J, TANG Y, et al. Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures[J]. Small,2017,13(4):1600687. doi: 10.1002/smll.201600687 [10] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096 [11] GAO X, JIANG L. Water-repellent legs of water striders[J]. Nature,2004,432(7013):36. doi: 10.1038/432036a [12] CHEN H, ZHANG P, ZHANG L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature,2016,532(7597):85-89. doi: 10.1038/nature17189 [13] LAI D L, KONG G, LI X C, et al. Corrosion resistance of ZnO nanorod superhydrophobic coatings with rose petal effect or lotus leaf effect[J]. Journal of Nanoscience and Nanotechnology,2019,19(7):3919-3928. doi: 10.1166/jnn.2019.16313 [14] MUKHOPADHYAY R D, VEDHANARAYANAN B, AJAYAGHOSH A. Creation of “Rose Petal” and “Lotus Leaf” effects on alumina by surface functionalization and metal-ion coordination[J]. Angewandte Chemie,2017,129(50):16234-16238. doi: 10.1002/ange.201709463 [15] LI Y, ZOU C, SHAO J, et al. Preparation of SiO2/PS superhydrophobic fibers with bionic controllable micro–nano structure via centrifugal spinning[J]. RSC Advances,2017,7(18):11041-11048. doi: 10.1039/C6RA25813A [16] XU Q, ZHAO Q, ZHU X, et al. A new kind of transparent and self-cleaning film for solar cells[J]. Nanoscale,2016,8(41):17747-17751. doi: 10.1039/C6NR03537J [17] CUI W, WANG T, YAN A, et al. Superamphiphobic surfaces constructed by cross-linked hollow SiO2 spheres[J]. Applied Surface Science,2017,400:162-171. doi: 10.1016/j.apsusc.2016.12.098 [18] ZHUANG A, LIAO R, LU Y, et al. Transforming a simple commercial glue into highly robust superhydrophobic surfaces via aerosol-assisted chemical vapor deposition[J]. ACS Applied Materials & Interfaces,2017,9(48):42327-42335. [19] SUN H, XU Y, ZHOU Y, et al. Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly (vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles[J]. Journal of Applied Polymer Science,2016,134(13):44501. [20] 王栋, 宣丽慧, 李超, 等. 静电纺纤维素纳米晶体/壳聚糖-聚乙烯醇复合纳米纤维的制备与表征[J]. 复合材料学报, 2018, 35(4):964-972.WANG D, XUAN L H, LI C, et al. Preparation and characterization of electrospun cellulose nanocrystals/chitosan-polyvinyl alcohol composite nanofibers[J]. Acta Materiae Compositae Sinica,2018,35(4):964-972(in Chinese). [21] KHARRAZ J A, AN A K. Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance[J]. Journal of Membrane Science,2020,595:117596. doi: 10.1016/j.memsci.2019.117596 [22] LIU M, QING Y, WU Y, et al. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process[J]. Applied Surface Science,2015,330:332-338. doi: 10.1016/j.apsusc.2015.01.024 [23] 王兴原, 费美丽, 陈纪忠. 原位红外光谱研究聚对苯二甲酸乙二醇酯(PET)醇解反应过程[J]. 高校化学工程学报, 2013, 27(1):58-64.WANG X Y, FEI M L, CHEN J Z. Study of process of polyethylene terephthalate(PET) methanolysis by FT-IR in situ[J]. Journal of Chemical Engineering of Chinese Universities,2013,27(1):58-64(in Chinese). [24] 江渊, 吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J]. 高分子通报, 2001(2):62-68. doi: 10.3969/j.issn.1003-3726.2001.02.010JIANG Y, WU L H. Applications of infrared spectroscopy in the structural study of poly (Ethylene Terephthalate) fibers[J]. Polymer Bulletin,2001(2):62-68(in Chinese). doi: 10.3969/j.issn.1003-3726.2001.02.010 [25] 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4):934-937.CHEN H S, SUN Z Y, SHAO J C. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society,2011,30(4):934-937(in Chinese). [26] 杨靖, 陈杰. 甲基修饰二氧化硅气凝胶的红外光谱和热分析研究[J]. 西安交通大学学报, 2009, 43(1):114-118. doi: 10.3321/j.issn:0253-987X.2009.01.025YANG J, CHEN J. Fourier transform infrared spectroscopy and thermal analysis of silica aerogel modified by methyl groups[J]. Journal of Xi'an Jiaotong University,2009,43(1):114-118(in Chinese). doi: 10.3321/j.issn:0253-987X.2009.01.025 [27] ZIMMERMANN J, REIFLER F A, FORTUNATO G, et al. A simple, one-step approach to durable and robust superhydropHobic textiles[J]. Advanced Functional Materials,2008,18(22):3662-3669. doi: 10.1002/adfm.200800755 [28] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546 [29] MIN K S, MANIVANNAN R, SON Y A. Porphyrin dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient self-cleaning material[J]. Dyes and Pigments,2019,162:8-17. doi: 10.1016/j.dyepig.2018.10.014 [30] XU Z, MIYAZAKI K, HORI T. Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning[J]. Applied Surface Science,2016,370:243-251. doi: 10.1016/j.apsusc.2016.02.135