留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚对苯二甲酸乙二醇酯滤料超疏水表面的制备及性能

董伟 钱付平 李晴 项腾飞 春铁军 鲁进利 韩云龙 夏勇军 胡笳

董伟, 钱付平, 李晴, 等. 聚对苯二甲酸乙二醇酯滤料超疏水表面的制备及性能[J]. 复合材料学报, 2020, 37(12): 3017-3025. doi: 10.13801/j.cnki.fhclxb.20200421.003
引用本文: 董伟, 钱付平, 李晴, 等. 聚对苯二甲酸乙二醇酯滤料超疏水表面的制备及性能[J]. 复合材料学报, 2020, 37(12): 3017-3025. doi: 10.13801/j.cnki.fhclxb.20200421.003
DONG Wei, QIAN Fuping, LI Qing, et al. Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3017-3025. doi: 10.13801/j.cnki.fhclxb.20200421.003
Citation: DONG Wei, QIAN Fuping, LI Qing, et al. Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3017-3025. doi: 10.13801/j.cnki.fhclxb.20200421.003

聚对苯二甲酸乙二醇酯滤料超疏水表面的制备及性能

doi: 10.13801/j.cnki.fhclxb.20200421.003
基金项目: 安徽省科技重大专项(18030801109)
详细信息
    通讯作者:

    钱付平,博士,教授,博士生导师,研究方向为通风除尘系统及建筑环境细颗粒控制理论及技术 E-mail:fpingqian@163.com

  • 中图分类号: TB306; TF09

Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface

  • 摘要: 以聚对苯二甲酸乙二醇酯(PET)滤料为基体材料,正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为改性剂,采用溶胶-凝胶法,制备超疏水性PET滤料。在此基础上,采用场发射扫描电子显微镜(FESEM-EDS)、傅里叶变换红外光谱仪(FTIR)和接触角测试仪研究PET滤料改性前后的微观形貌、表面组成以及接触角等参数。研究表明:改性前后滤料微观孔隙率基本不变,TEOS改性的PET(T-PET)滤料由于形成大量亲水性的—OH基团,呈现完全润湿性;MTES改性的PET(M-PET)滤料表面存在疏水性的—CH3基团,呈现高疏水性;TEOS和MTES共同改性的PET (MT-PET)滤料表面由于大量疏水性的—CH3基团,且有大量的含有—CH3基团SiO2纳米粒子沉积在纤维表面,降低了滤料表面能,形成纳米级粗糙、褶皱甚至凸起形态;MT-PET的静态接触角(WCA)为(158.8±1.2)°,流失角(WSA)为(6.9±1.5)°,达到超疏水状态。此外,通过喷涂湿粉尘和水中浸泡(室温)滤料对比试验,表明MT-PET滤料具有良好的自清洁性能与稳定性。综上,本文中MT-PET超疏水滤料的制备,对于高湿环境下的袋式除尘材料的研究开发具有潜在价值。

     

  • 图  1  不同改性剂添加量时PET滤料产物的表面微观形貌SEM图像

    Figure  1.  SEM images of the surface micromorphology of PET filter products with different modifier additions

    图  2  不同改性剂添加量时PET滤料产物的表面EDS图像

    Figure  2.  EDS images of PET filter products with different modifier additions

    图  3  不同改性剂添加量时PET滤料产物的FTIR图谱

    Figure  3.  FTIR spectra of PET filter products with different modifier additions

    图  4  不同改性剂添加量时PET滤料产物的WCA

    Figure  4.  WCA of PET filter products with different modifier additions

    图  5  不同湿度粉尘在PET和MT-PET滤料表面的自清洁过程

    Figure  5.  Self-cleaning process of dust with different humidity on the surface of PET and MT-PET filter materials

    图  6  室温下不同浸泡时间对MT-PET滤料浸润性的影响

    Figure  6.  Effect of different immersion time on the wettability of MT-PET at room temperature

    图  7  MT-PET超疏水滤料制备机制

    Figure  7.  Preparation mechanism of MT-PET superhydrophoic filter material

    表  1  不同改性剂添加量时PET滤料的具体配方

    Table  1.   Formulation of PET filter with different modifiers loading

    SamplePET/gTEOS/gMTES/g
    Polyethylene terephthalate (PET) 1.0 0 0
    TEOS-modified PET (T-PET) 1.0 4.0 0
    MTES-modified PET (M-PET) 1.0 0 4.0
    TEOS and MTES modified PET (MT-PET) 1.0 2.5 1.5
    Notes: TEOS—Tetraethyl orthosilicate; MTES—Methyl triethoxysilane.
    下载: 导出CSV

    表  2  不同改性剂添加量时PET滤料产物的EDS元素成分

    Table  2.   EDS element content of PET filter products with different modifier additions wt%

    SamplePETT-PETM-PETMT-PET
    Element C 66.18 61.94 78.25 73.28
    O 33.82 33.58 18.29 19.78
    Si 0 4.48 3.46 9.94
    下载: 导出CSV

    表  3  不同改性剂添加量时PET滤料产物的静态接触角(WCA)和水流失角(WSA)

    Table  3.   Water contact angle(WCA) and water shedding angle (WSA) of PET filter products with different modifier additions

    SampleWCA /(º)WSA/(º)
    PET 119.7±2.8 20.5±1.7
    T-PET 0
    M-PET 138.6±1.6 15.6±1.7
    MT-PET 158.8±1.4 6.9±1.2
    下载: 导出CSV

    表  4  不同湿度粉尘对PET和MT-PET滤料WCA的影响

    Table  4.   Effect of dust with different humidity on WCA of PET and MT-PET filter material

    SampleHumidity of dust/%WCA/(°)
    PET 6 109.7±2.5
    9 102.6±2.1
    12 86.8±1.6
    MT-PET 6 156.6±1.4
    9 153.9±1.8
    12 151.1±1.6
    下载: 导出CSV
  • [1] ZHAO Q, YAO W, ZHANG C, et al. Study on the influence of fog and haze on solar radiation based on scattering-weakening effect[J]. Renewable Energy,2019,134:178-185. doi: 10.1016/j.renene.2018.11.027
    [2] LI H, WANG Q, SHAO M, et al. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China[J]. Environmental Pollution,2016,208:655-662. doi: 10.1016/j.envpol.2015.10.042
    [3] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM 2.5 capture[J]. Nature Communications,2015,6(1):1-9.
    [4] GU Y L, CHEN C Z, GU X J. Research on high temperature fume control technology of bag house dusting[J]. Heavy Machinery,2015(2):17-21.
    [5] 郭颖赫, 赫伟东, 柳静献. 聚对苯二甲酸乙二醇酯纳米纤维膜/涤纶针刺毡过滤复合材料的制备及性能[J]. 复合材料学报, 2019, 36(3):572-577.

    GUO Y H, HE W D, LIU J X. Preparation and characterization of polyethylene terephthalate nanofiber membrane/polyester needle felt composite filters[J]. Acta Materiae Compositae Sinica,2019,36(3):572-577(in Chinese).
    [6] KORTA J, MLYNIEC A, UHL T. Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints[J]. Composites Part B: Engineering,2015,79:621-630. doi: 10.1016/j.compositesb.2015.05.020
    [7] KHOMWACHIRAKUL P, DEVAHASTIN S, SWASDISEVI T, et al. Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM[J]. Drying Technology,2016,34(4):403-419. doi: 10.1080/07373937.2015.1081930
    [8] SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature,2015,527(7576):82-85. doi: 10.1038/nature15738
    [9] ZHANG S, HUANG J, TANG Y, et al. Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures[J]. Small,2017,13(4):1600687. doi: 10.1002/smll.201600687
    [10] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096
    [11] GAO X, JIANG L. Water-repellent legs of water striders[J]. Nature,2004,432(7013):36. doi: 10.1038/432036a
    [12] CHEN H, ZHANG P, ZHANG L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature,2016,532(7597):85-89. doi: 10.1038/nature17189
    [13] LAI D L, KONG G, LI X C, et al. Corrosion resistance of ZnO nanorod superhydrophobic coatings with rose petal effect or lotus leaf effect[J]. Journal of Nanoscience and Nanotechnology,2019,19(7):3919-3928. doi: 10.1166/jnn.2019.16313
    [14] MUKHOPADHYAY R D, VEDHANARAYANAN B, AJAYAGHOSH A. Creation of “Rose Petal” and “Lotus Leaf” effects on alumina by surface functionalization and metal-ion coordination[J]. Angewandte Chemie,2017,129(50):16234-16238. doi: 10.1002/ange.201709463
    [15] LI Y, ZOU C, SHAO J, et al. Preparation of SiO2/PS superhydrophobic fibers with bionic controllable micro–nano structure via centrifugal spinning[J]. RSC Advances,2017,7(18):11041-11048. doi: 10.1039/C6RA25813A
    [16] XU Q, ZHAO Q, ZHU X, et al. A new kind of transparent and self-cleaning film for solar cells[J]. Nanoscale,2016,8(41):17747-17751. doi: 10.1039/C6NR03537J
    [17] CUI W, WANG T, YAN A, et al. Superamphiphobic surfaces constructed by cross-linked hollow SiO2 spheres[J]. Applied Surface Science,2017,400:162-171. doi: 10.1016/j.apsusc.2016.12.098
    [18] ZHUANG A, LIAO R, LU Y, et al. Transforming a simple commercial glue into highly robust superhydrophobic surfaces via aerosol-assisted chemical vapor deposition[J]. ACS Applied Materials & Interfaces,2017,9(48):42327-42335.
    [19] SUN H, XU Y, ZHOU Y, et al. Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly (vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles[J]. Journal of Applied Polymer Science,2016,134(13):44501.
    [20] 王栋, 宣丽慧, 李超, 等. 静电纺纤维素纳米晶体/壳聚糖-聚乙烯醇复合纳米纤维的制备与表征[J]. 复合材料学报, 2018, 35(4):964-972.

    WANG D, XUAN L H, LI C, et al. Preparation and characterization of electrospun cellulose nanocrystals/chitosan-polyvinyl alcohol composite nanofibers[J]. Acta Materiae Compositae Sinica,2018,35(4):964-972(in Chinese).
    [21] KHARRAZ J A, AN A K. Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance[J]. Journal of Membrane Science,2020,595:117596. doi: 10.1016/j.memsci.2019.117596
    [22] LIU M, QING Y, WU Y, et al. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process[J]. Applied Surface Science,2015,330:332-338. doi: 10.1016/j.apsusc.2015.01.024
    [23] 王兴原, 费美丽, 陈纪忠. 原位红外光谱研究聚对苯二甲酸乙二醇酯(PET)醇解反应过程[J]. 高校化学工程学报, 2013, 27(1):58-64.

    WANG X Y, FEI M L, CHEN J Z. Study of process of polyethylene terephthalate(PET) methanolysis by FT-IR in situ[J]. Journal of Chemical Engineering of Chinese Universities,2013,27(1):58-64(in Chinese).
    [24] 江渊, 吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J]. 高分子通报, 2001(2):62-68. doi: 10.3969/j.issn.1003-3726.2001.02.010

    JIANG Y, WU L H. Applications of infrared spectroscopy in the structural study of poly (Ethylene Terephthalate) fibers[J]. Polymer Bulletin,2001(2):62-68(in Chinese). doi: 10.3969/j.issn.1003-3726.2001.02.010
    [25] 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4):934-937.

    CHEN H S, SUN Z Y, SHAO J C. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society,2011,30(4):934-937(in Chinese).
    [26] 杨靖, 陈杰. 甲基修饰二氧化硅气凝胶的红外光谱和热分析研究[J]. 西安交通大学学报, 2009, 43(1):114-118. doi: 10.3321/j.issn:0253-987X.2009.01.025

    YANG J, CHEN J. Fourier transform infrared spectroscopy and thermal analysis of silica aerogel modified by methyl groups[J]. Journal of Xi'an Jiaotong University,2009,43(1):114-118(in Chinese). doi: 10.3321/j.issn:0253-987X.2009.01.025
    [27] ZIMMERMANN J, REIFLER F A, FORTUNATO G, et al. A simple, one-step approach to durable and robust superhydropHobic textiles[J]. Advanced Functional Materials,2008,18(22):3662-3669. doi: 10.1002/adfm.200800755
    [28] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546
    [29] MIN K S, MANIVANNAN R, SON Y A. Porphyrin dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient self-cleaning material[J]. Dyes and Pigments,2019,162:8-17. doi: 10.1016/j.dyepig.2018.10.014
    [30] XU Z, MIYAZAKI K, HORI T. Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning[J]. Applied Surface Science,2016,370:243-251. doi: 10.1016/j.apsusc.2016.02.135
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1414
  • HTML全文浏览量:  432
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 录用日期:  2020-04-13
  • 网络出版日期:  2020-04-22
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回