Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites
-
摘要: 将Ti6Al4V(TC4)粉末与少层石墨烯(GR)粉末进行三维机械旋转混合,实现了GR在TC4球形粉末表面的均匀包覆,经放电等离子烧结(SPS)得到增强相呈三维网络状分布的GR/TC4复合材料。对不同的SPS烧结温度、保温时间、升温速率和轴向压力对GR与钛基体原位界面反应程度的影响进行了研究,并对界面处不同GR/TC4比例的网状结构复合材料的物相结构、显微组织及室温压缩性能进行了系统性的研究。结果表明,烧结温度和升温速率是影响GR与基体反应程度的主要因素,压力主要影响材料致密度,低温高压快速烧结可以降低GR与基体的反应程度,但高比例的GR残留并没有带来力学性能的大幅提升。对于0.25wt%的GR添加量,GR的反应比例约为70%~80%能得到更加良好的异质界面的结合,获得综合力学性能优异的GR/TC4协同增强的钛合金基复合材料。GR在钛合金基体中的三维网络状分布能调控钛基复合材料的强度与塑性的矛盾。Abstract: Few-layered graphene reinforced titanium matrix composites (GR/TC4) with 3D network structures were fabricated through a 3D mixing machine and spark plasma sintering (SPS) technique. The effects of different sintering temperatures, holding time, heating rate and uniaxial pressure in the SPS on the in-situ interface reaction of GR with titanium matrix were studied. The phases, microstructure and compressive properties at room temperature of the network structured composites with different GR/TiC ratios were investigated systematically. Experimental results exhibite that the SPS temperature and heating rate are the key factors for determination of reaction ratio of the GR with matrix and the uniaxial pressure affects relative density of the composites. Low temperature, high pressure and fast sintering can inhibit the reaction between the GR and matrix. However, the composites with more residual GR do not show excellent mechanical properties. It is indicated that excellent compressive strength and ductility integrated mechanical properties are achieved with GR reaction ratio of 70%-80% in the 0.25wt% GR/TC4 composites, where the interface bonding is to an optimal state. The 3D network distribution of GR in the titanium alloy matrix can tailor the conflict between strength and ductility of the titanium matrix nanocomposites.
-
表 1 TC4与GR/TC4网状结构复合材料在不同烧结条件下的压缩性能
Table 1. Compressive properties of the TC4 and GR/TC4 network structure composites under different sintering conditions
Sample Yield strength σ0.2/MPa Compressive strength σb/MPa Fracture strain ε/% 0.5wt%GR/TC4-800℃-50℃/min-10 min 1 039 ± 5 1 509 ± 6 32.8 ± 0.6 0.5wt%GR/TC4-900℃-50℃/min-10 min 1 091 ± 2 1 782 ± 3 35.9 ± 0.2 0.5wt%GR/TC4-1000℃-50℃/min-10 min 1 148 ± 6 1 859 ± 5 36.5 ± 0.5 0.5wt%GR/TC4-1050℃-50℃/min-10 min 1 140 ± 4 1 842 ± 3 35.8 ± 0.4 0.25wt%GR/TC4-1000℃-100℃/min-7 min 1 056 ± 3 1 851 ± 4 38.9 ± 0.3 0.25wt%GR/TC4-1000℃-100℃/min-10 min 1 087 ± 5 1 914 ± 6 39.2 ± 0.5 0.25wt%GR/TC4-1000℃-100℃/min-15 min 1 086 ± 4 1 984 ± 5 41.3 ± 0.5 0.25wt%GR/TC4-1050℃-50℃/min-7 min 1 148 ± 3 1 773 ± 4 35.2 ± 0.2 TC4-1000℃-100℃/min-7 min 997 ± 2 1 709 ± 3 39.5 ± 0.4 TC4-1000℃-100℃/min-10 min 991 ± 3 1 628 ± 5 34.9 ± 0.3 TC4-1050℃-50℃/min-7 min 1 002 ± 4 1 621 ± 3 35.1 ± 0.6 TC4-1000℃-100℃/min-15 min 989 ± 3 1 613 ± 2 34.3 ± 0.3 -
[1] 汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金颗粒增强钛基复合材料研究进展[J]. 粉末冶金技术, 2004, 22(5):293-296. doi: 10.3321/j.issn:1001-3784.2004.05.008TANG Huiping, HUANG Baiyun, LIU Yong, et al. Progress in powder metallurgy particle reinforced Ti matrix composite[J]. Powder Metallurgy Technology,2004,22(5):293-296(in Chinese). doi: 10.3321/j.issn:1001-3784.2004.05.008 [2] TJONG S C, MAI Y W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology,2008,68(3):583-601. [3] 黄陆军, 耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报, 2014, 34(4):126-138. doi: 10.11868/j.issn.1005-5053.2014.4.013HUANG Lujun, GENG Lin. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):126-138(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.013 [4] GENG L, HUANG L J. High temperature properties of discontinuously reinforced titanium matrix composites: A review[J]. Acta Metallurgica Sinica,2014,27(5):787-797. [5] GOREES S, PETITCORPS Y L, MATAR S, et al. Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite[J]. Materials Science & Engineering A,2008,340(1):80-87. [6] MIN Y K, JAE S P, MIN K P, et al. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4V composites[J]. Scripta Materialia,2012,66(7):487-490. [7] NID R, GENGL, ZHANG J, et al. Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4C-C[J]. Materials Science and Engineering: A,2008,478(1):291-296. [8] 吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4):139-146. doi: 10.11868/j.issn.1005-5053.2014.4.014LV Weijie, GUO Xianglong, WANG Liqiang, et al. Progress on in-situ discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):139-146(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.014 [9] HUANG L J, GENG L, PENG H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal[J]. Progress in Materials Science,2015,71:93-168. doi: 10.1016/j.pmatsci.2015.01.002 [10] HUANGL J, GENGL, LIA B, et al. In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J]. Scripta Materialia,2009,60(11):996-999. [11] HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics/Physics of Solids,1962,10(4):343-352. doi: 10.1016/0022-5096(62)90005-4 [12] TJONG S C, RRPORTS E R. Recent progress in the development and properties of novel metal matrix nanocompo-sites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001 [13] LEE CG, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996 [14] STEURER P, WISSERT R, THOMANN R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide[J]. Macromolecular Rapid Communications,2010,30(4-5):316-327. [15] ZHU Y W, MURALIS, CAI W W, et al. Graphene-based materials: Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3823-3853. [16] 郭强, 赵蕾, 李赞, 等. 金属材料的石墨烯强韧化[J]. 中国材料进展. 2019, 38(3): 205-213.GUO Qiang, ZHAO Lei, LI Zan, et al. Strengthening and toughening of graphene-reinforced metal matrix composites[J].Materials China, 2019, 38(3): 205-213(in Chinese). [17] DONG L L, XIAO B, JINA L H, et al. Mechanisms of simultaneously enhanced strength and ductility of titanium matrix composites reinforced with nanosheets of graphene oxides[J]. Ceramics International,2019,45(15):19370-19379. doi: 10.1016/j.ceramint.2019.06.189 [18] GURBUZ M, MUTUK T. Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites[J]. Journal of Composite Materials,2018,52(4):543-551. doi: 10.1177/0021998317745143 [19] SNOG Y, CHEN Y, LIU WW, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers[J]. Materials/Design,2016,109:256-263. [20] CAO H C, LIANG Y L. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites[J]. Journal of Alloys and Compounds,2020,812:152057. doi: 10.1016/j.jallcom.2019.152057 [21] CAO Z, WANG X, LI J, et al. Reinforcement with graphene nanoflakes in titanium matrix composites[J]. Journal of Alloys/Compounds,2017,696:498-502. [22] MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy[J]. Materials Science& Engineering A,2018,725:541-548. [23] MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low concentration graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science & Engineering A,2017,687:164-174. [24] HU Z, CHEN F, XU J, et al. Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties[J]. Composites Part B: Engineering,2018,134:133-140. doi: 10.1016/j.compositesb.2017.09.069 [25] MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Carbon,2018,137:146-155. doi: 10.1016/j.carbon.2018.05.013 [26] SUN C, ZHANG X, ZHAO N Q, et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene like network reinforced Cu matrix composites[J]. Materials Science & Engineering A,2019(756):82-91. [27] ZHANG X, SHI C S, LIU E Z, et al. High-strength graphene network reinforced copper matrix composites achieved by architecture design and grain structure regulation[J]. Materials Science & Engineering A,2019(762):138063. [28] XU T L, ZHOU S S, CUI S Q, et al. Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites[J]. Composites Part B: Engineering,2019(178):107495. [29] 邹君玉. 石墨烯/纯铝复合材料的制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.ZOU Junyu. The preparation and properties of graphene reinforced pure aluminum composites[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).