留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微晶纤维素基复合材料的制备及其对亚甲基蓝的催化降解性能

陈嘉川 戢德贤 林兆云 杨桂花 侯慧敏

陈嘉川, 戢德贤, 林兆云, 等. 微晶纤维素基复合材料的制备及其对亚甲基蓝的催化降解性能[J]. 复合材料学报, 2020, 37(12): 3184-3193. doi: 10.13801/j.cnki.fhclxb.20200416.001
引用本文: 陈嘉川, 戢德贤, 林兆云, 等. 微晶纤维素基复合材料的制备及其对亚甲基蓝的催化降解性能[J]. 复合材料学报, 2020, 37(12): 3184-3193. doi: 10.13801/j.cnki.fhclxb.20200416.001
CHEN Jiachuan, JI Dexian, LIN Zhaoyun, et al. Preparation of modified microcrystalline cellulose based composite and its catalytic degradation performance on methylene blue[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3184-3193. doi: 10.13801/j.cnki.fhclxb.20200416.001
Citation: CHEN Jiachuan, JI Dexian, LIN Zhaoyun, et al. Preparation of modified microcrystalline cellulose based composite and its catalytic degradation performance on methylene blue[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3184-3193. doi: 10.13801/j.cnki.fhclxb.20200416.001

微晶纤维素基复合材料的制备及其对亚甲基蓝的催化降解性能

doi: 10.13801/j.cnki.fhclxb.20200416.001
基金项目: 国家重点研发计划(2017YFB0307900);国家自然科学基金(31670595;31770628);泰山学者工程;山东省高等学校科技计划(J18KA091);生物基材料与绿色造纸国家重点实验室开放基金(ZZ20190205)
详细信息
    通讯作者:

    杨桂花,博士,教授,研究方向为制浆造纸绿色化学技术与生物基功能材料制备  E-mail: ygh@qlu.edu.cn

  • 中图分类号: TB332

Preparation of modified microcrystalline cellulose based composite and its catalytic degradation performance on methylene blue

  • 摘要: 以微晶纤维素(MCC)为原料,通过在其表面负载纳米氧化铜颗粒(CuO NPs),添加3-氯丙基三甲氧基硅烷(CPTES)与二乙醇胺(DEA)进行接枝反应制备CuO NPs@MCC–Si–N(OH)2复合材料。探讨了DEA添加量对CuO NPs@MCC–Si–N(OH)2性能的影响,表征并分析了改性微晶纤维素红外光谱、晶体结构、表面形貌和热稳定性。结果表明,CuO NPs可成功负载在MCC表面,硅烷偶联剂可提高复合材料的分散性与接枝胺基的能力,进而增强其催化活性,使硼氢化钠(NaBH4)与亚甲基蓝(MB)氧化还原反应效率增加,快速降解MB染色剂。通过优化发现DEA用量为20wt%时制得的CuO NPs@MCC–Si–N(OH)2催化效果最佳,CuO NPs@MCC–Si–N(OH)2和NaBH4的用量分别为30 mg和10 mg,处理30 mL 3 mmol/L MB溶液5 min后,MB去除率可达99.71%,五次循环性测试后,去除率为93.24%。

     

  • 图  1  改性微晶纤维素 (MCC)(a)和不同二乙醇胺 (DEA)添加量的纳米CuO颗粒(CuO NPs)@MCC–Si–N(OH)2(b)的FTIR图谱

    Figure  1.  FTIR spectra of modified microcrystalline cellulose (MCC) (a) and CuO nanoparticles (CuO NPs)@MCC–Si–N(OH)2 with different contents of diethanolamine (DEA) (b)

    图  2  MCC及改性MCC的SEM图像

    Figure  2.  SEM images of MCC and modified MCC

    图  3  改性MCC(a)和不同DEA添加量的CuO NPs@MCC–Si–N(OH)2(b)的XRD图谱

    Figure  3.  XRD spectra of modified MCC(a) and CuO NPs@MCC–Si–N(OH)2 with different additions of DEA(b)

    图  4  改性MCC和不同DEA添加量的CuO NPs@MCC–Si–N(OH)2的TG (a)及DTG (b)曲线

    Figure  4.  TG (a) and DTG (b) curves of modified MCC and CuO NPs@MCC–Si–N(OH)2 with different additions of DEA

    图  5  DEA添加量(a)、CuO NPs@MCC–Si–N(OH)2用量(b)、反应时间(c)和MB浓度(d)对MB催化降解性能的影响

    Figure  5.  Effect of DEA addition amount (a), dosage of CuO NPs@MCC–Si–N(OH)2 (b), reaction time (c) and MB concentration (d) on degradation properties of MB

    表  1  亚甲基蓝 (MB) 标样的浓度与吸光度

    Table  1.   Concentration and absorbance of methylene blue (MB) standards

    No.Concentration/(mg·L−1)Absorbance
    16.400.36672
    25.120.32067
    33.840.22950
    42.560.14548
    51.280.06453
    下载: 导出CSV

    表  2  改性MCC的FTIR图谱带分析

    Table  2.   Band characteristics of FTIR spectra related to MCC and grafted MCC

    Wavenumber/cm−1Peak attribution
    3 200-3 600 —OH stretching vibration absorption peak in hydroxyl group and carboxyl group
    2 935 Methylene—C—H stretching vibration absorption peak
    1 740 —C=O stretching vibration absorption peak
    1 260 Si—C stretching vibration absorption peak
    800 Si—O—C stretching vibration absorption peak
    560 Cu—O stretching vibration absorption peak
    下载: 导出CSV

    表  3  不同DEA添加量、CuO NPs@MCC–Si–N(OH)2用量、反应时间和MB浓度时催化MB的去除率和去除量

    Table  3.   Removal rate and amount of MB catalyted by CuO NPs@MCC–Si–N(OH)2 with different DEA addition amounts, dosage of CuO NPs@MCC–Si–N(OH)2, reaction time and concentration of MB

    Fixed factorResearch factor (variable)Range of variableRemoval rate
    of MB/%
    Removal amount
    of MB/mg
    Dosage of CuO NPs@MCC–Si–N(OH)2 10 mg
    Dosage of NaBH4 10 mg
    Reaction time 5 min
    MB 30 mL 2 mmol/L
    DEA addition amount 5wt% 92.50±0.21 17.76±0.04
    10wt% 95.16±0.15 18.27±0.03
    15wt% 95.70±0.15 18.37±0.03
    20wt% 97.15±0.10 18.65±0.02
    DEA addition amount 20wt%
    Dosage of NaBH4 10 mg
    Reaction time 5 min
    MB 30 mL 2 mmol/L
    Dosage of CuO NPs@MCC–Si–N(OH)2 10 mg 97.15±0.10 18.65±0.02
    20 mg 98.23±0.12 18.86±0.02
    30 mg 99.71±0.10 19.14±0.02
    40 mg 99.84±0.09 19.17±0.02
    50 mg 99.87±0.08 19.18±0.02
    DEA addition amount 20wt%
    Dosage of CuO NPs@MCC–Si–N(OH)2 30 mg
    Dosage of NaBH4 10 mg
    MB 30 mL 2 mmol/L
    Reaction time 1 min 92.50±0.41 17.76±0.08
    3 min 95.76±0.29 18.39±0.06
    5 min 99.71±0.10 19.14±0.02
    7 min 99.80±0.07 19.16±0.01
    9 min 99.80±0.09 19.16±0.02
    Dosage of CuO NPs@MCC–Si–N(OH)2 30 mg
    DEA addition amount 20wt%
    Dosage of NaBH4 10 mg
    Reaction time 5 min
    Concentration of MB 1 mmol/L 99.78±0.07 9.58±0.01
    2 mmol/L 99.71±0.10 19.14±0.02
    3 mmol/L 99.18±0.16 28.56±0.03
    4 mmol/L 40.53±5.76 15.56±1.11
    5 mmol/L 31.37±6.81 15.02±1.31
    下载: 导出CSV
  • [1] 钱萍萍. 锌系水滑石对亚甲基蓝降解性能的研究[D]. 杭州: 浙江工业大学, 2014.

    QIAN Pingping. Study on degradation of methylene bule with Zinc based layered double hydroxides[D]. Hangzhou: Zhejiang University of Technology, 2014(in Chinese).
    [2] 宇振东. 印染废水处理技术与装置[J]. 环境工程学报, 1986, 11(7):10-17.

    YU Zhendong. Printing and dyeing wastewater treatment technology and device[J]. Chinese Journal of Environmental Engineering,1986,11(7):10-17(in Chinese).
    [3] 张宇峰, 滕洁, 张雪英, 等. 印染废水处理技术的研究进展[J]. 工业水处理, 2003, 23(4):23-27. doi: 10.3969/j.issn.1005-829X.2003.04.006

    ZHANG Yufeng, TENG Jie, ZHANG Xueying, et al. Progress of the researches on dyeing wastewater treatment techniques[J]. Industrial Water Treatment,2003,23(4):23-27(in Chinese). doi: 10.3969/j.issn.1005-829X.2003.04.006
    [4] 曹风. 印染废水水质特征及处理技术[J]. 科技信息:科学教研, 2007(19):290-300.

    CAO Feng. Water quality characteristics and treatment technology of printing and dyeing wastewater[J]. Science & Technology Information,2007(19):290-300(in Chinese).
    [5] 王开花. 玉米秸秆颗粒对亚甲基蓝模拟染料废水的吸附处理研究[D]. 内蒙古: 内蒙古大学, 2013.

    WANG Kaihua. The study on the adsorption treatment of methylene blue dye wastewater using maize straw particles[D]. Neimenggu: Inner Mongolia University, 2013.
    [6] 廖钦洪, 刘庆业, 蒙冕武, 等. 稻壳基活性炭的制备及其对亚甲基蓝吸附的研究[J]. 环境工程学报, 2011, 5(11):2447-2452.

    LIAO Qinhong, LIU Qingye, MENG Mianwu. Study on preparation of rice husk-based activated carbon and its adsorption of methylene blue[J]. Chinese Journal of Environmental Engineering,2011,5(11):2447-2452(in Chinese).
    [7] 陈娴, 高永, 徐旭, 等. FeY催化剂光助Fenton法降解亚甲基蓝染料废水[J]. 环境科学与技术, 2012, 35(02):139-142. doi: 10.3969/j.issn.1003-6504.2012.02.030

    CHEN Xian, GAO Yong, XU Xu, et al. Degradation of dye methylene blue wastewater by photo-Fenton reaction using FeY catalyst[J]. Environmental Science & Technology,2012,35(02):139-142(in Chinese). doi: 10.3969/j.issn.1003-6504.2012.02.030
    [8] CHEVAL N, GINDY N, FLOWKES C, et al. Polyamide 66 microspheres metallised within situsynthesised gold nanoparticles for a catalytic application[J]. Nanoscale Research Letters,2012,7(1):182-190. doi: 10.1186/1556-276X-7-182
    [9] 侯永发. 微晶纤维素的研究与应用[J]. 林产化学与工业, 1993(2):169-175.

    HOU Yongfa. The research work and practical application of microcrystalline cellulose(review)[J]. Chemistry and Industry of Forest Products,1993(2):169-175(in Chinese).
    [10] DOW W P, WANG Y P, HUANG T J. Yttria-stabilized zirconia supported copper oxide catalyst: I. Effect of oxygen vacancy of support on copper oxide reduction[J]. Journal of Catalysis,1996,160(2):171-182. doi: 10.1006/jcat.1996.0136
    [11] HADI A, PARIA J, LALEH M. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties[J]. Carbohydrate Polymers,2018,186:273-281. doi: 10.1016/j.carbpol.2018.01.067
    [12] 李季, 杨春晖, 张磊, 等. 3-氯丙基三甲氧基硅烷合成新方法的研究[J]. 材料科学与工艺, 2011, 19(2):135-139. doi: 10.11951/j.issn.1005-0299.20110228

    LI Ji, YANG Chunhui, ZHANG Lei, et al. Studies on a synthetic novel technology of 3-chloropropyltrimethoxysilane[J]. Materials Science &Technology,2011,19(2):135-139(in Chinese). doi: 10.11951/j.issn.1005-0299.20110228
    [13] NASROLLAHZADEH M, ISSAABADI Z, SAJADI S M. Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water[J]. RSC Advances,2018,8(49):27631-27644. doi: 10.1039/C8RA04368J
    [14] 张美云, 强丹丹, 李金宝, 等. 微晶纤维素制备过程中纤维素结构与形态特征的变化[J]. 中国造纸, 2016, 35(6):28-32.

    ZHANG Meiyun, QIANG Dandan, LI Jinbao, et al. Changes of structure and morphological characteristics of cellulose during[J]. China Pulp & Paper,2016,35(6):28-32(in Chinese).
    [15] AMAL E, FEDERICO G, AMAR D, et al. Natural α-Fe2O3 as an efficient catalyst for the p-nitrophenol reduction[J]. Materials Science & Engineering B,2018,229:126-134.
    [16] DUAN C, LIU C R, MENG X, et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOF-199s nanocatalysts for catalyticreduction of 4-nitrophenol[J]. Applied Organometallic Chemistry,2019,1:1-10.
    [17] CHRISTENSEN H, SEHESTED K, CORFITZEN H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures[J]. The Journal of Physical Chemistry B,1982,86(9):1588-1590. doi: 10.1021/j100206a023
    [18] MCGINNIS B D, ADAMS V D, MIDDLEBROOKS E J. Evaluation of methylene blue and riboflavin for the photosensitized degradation of ethylene glycol[J]. Environment International,1999,25(8):953-959. doi: 10.1016/S0160-4120(99)00065-3
    [19] 叶瑞荣, 汪朝阳, 杨凯, 等. 二乙醇胺改性聚乳酸的直接熔融聚合法合成及其表征[J]. 化学通报, 1999, 25(8):953-959.

    YE Ruirong, WANG Zhaoyang, YANG Kai, et al. Direct melt polycondensation and characterization of polylactic acid modified by diethanolamine[J]. Chemistry,1999,25(8):953-959(in Chinese).
    [20] 付育才. 纳米氧化铜的制备及其性质的研究[D]. 曲阜: 曲阜师范大学, 2013.

    FU Yucai. Preparation and properties of nano-copper oxide[D].Qufu: Qufu Normal University, 2013(in Chinese).
    [21] 张帆, 杨俊玲. 纳米CuO的制备及其表面改性[J]. 辽宁化工, 2008(10):651-654. doi: 10.3969/j.issn.1004-0935.2008.10.002

    ZHANG Fan, YANG Junling. Preparation and surface modification of nano-CuO[J]. Liaoning Chemical Industry,2008(10):651-654(in Chinese). doi: 10.3969/j.issn.1004-0935.2008.10.002
    [22] BAE S, GIM S, KIM H, et al. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol[J]. Applied Catalysis B Environmental,2016,182:541-549. doi: 10.1016/j.apcatb.2015.10.006
    [23] 胡亿明, 蒋剑春, 孙云娟, 等. 纤维素与半纤维素热解过程的相互影响[J]. 林产化学与工业, 2014, 34(4):1-8.

    HU Yiming, JIANG Jianchun, SUN Yunjuan, et al. Interaction between cellulose and hemicellulose pyrolysis process[J]. Forest Chemicals and Industry,2014,34(4):1-8(in Chinese).
    [24] 徐惠, 黄剑, 陈泳, 等. 聚苯胺/氧化铜纳米复合材料的制备及抗菌性能[J]. 高分子材料科学与工程, 2011, 27(10):173-176.

    XU Hui, HUANG Jian, CHEN Yong, et al. Preparation and antibacterial properties of polyaniline/copper oxide nanocomposites[J]. Polymer Materials & Science Engineering,2011,27(10):173-176(in Chinese).
    [25] LI Z, JIA Z, NI T, et al. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction[J]. Applied Surface Science,2017,1(426):160-168.
    [26] GENG Q, DU J. Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles[J]. RSC Advances,2014,4(32):16425. doi: 10.1039/C4RA01866D
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1083
  • HTML全文浏览量:  395
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 录用日期:  2020-03-18
  • 网络出版日期:  2020-04-16
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回