Preparation of modified microcrystalline cellulose based composite and its catalytic degradation performance on methylene blue
-
摘要: 以微晶纤维素(MCC)为原料,通过在其表面负载纳米氧化铜颗粒(CuO NPs),添加3-氯丙基三甲氧基硅烷(CPTES)与二乙醇胺(DEA)进行接枝反应制备CuO NPs@MCC–Si–N(OH)2复合材料。探讨了DEA添加量对CuO NPs@MCC–Si–N(OH)2性能的影响,表征并分析了改性微晶纤维素红外光谱、晶体结构、表面形貌和热稳定性。结果表明,CuO NPs可成功负载在MCC表面,硅烷偶联剂可提高复合材料的分散性与接枝胺基的能力,进而增强其催化活性,使硼氢化钠(NaBH4)与亚甲基蓝(MB)氧化还原反应效率增加,快速降解MB染色剂。通过优化发现DEA用量为20wt%时制得的CuO NPs@MCC–Si–N(OH)2催化效果最佳,CuO NPs@MCC–Si–N(OH)2和NaBH4的用量分别为30 mg和10 mg,处理30 mL 3 mmol/L MB溶液5 min后,MB去除率可达99.71%,五次循环性测试后,去除率为93.24%。Abstract: Microcrystalline cellulose (MCC) was used as raw materials and loaded with CuO nanoparticles (CuO NPs). Then, 3-chloropropyltrimethoxysilane (CPTES) and diethanolamine (DEA) were added for grafting reaction to prepare CuO NPs@MCC–Si–N(OH)2. CuO NPs@MCC–Si–N(OH)2 was characterized with FTIR, XRD, thermal gravimetric analysis and morphology analysis. The results show that CuO NPs can be successfully loaded on the surface of MCC, and silane coupling agent can improve the dispersion of the composite and the ability to graft amine groups, thus enhancing its catalytic activity, and increasing the redox reaction efficiency of sodium borohydride (NaBH4) and methylene blue (MB). Hence, MB stain is degraded rapidly. It’s also found that CuO NPs@MCC–Si–N(OH)2 with 20wt% DEA shows the best catalytic effect, and the highest removal efficiency is 99.71% after treating 30 mL MB solution (3 mmol/L) with 30 mg CuO NPs@MCC–Si–N(OH)2 and 10 mg NaBH4 within 5 min, and the removal rate is 93.24% after five cycles.
-
Key words:
- microcrystalline cellulose /
- 3-chloropropyltriethoxysilane /
- diethanolamine /
- methylene blue /
- catalytic /
- degradation
-
表 1 亚甲基蓝 (MB) 标样的浓度与吸光度
Table 1. Concentration and absorbance of methylene blue (MB) standards
No. Concentration/(mg·L−1) Absorbance 1 6.40 0.36672 2 5.12 0.32067 3 3.84 0.22950 4 2.56 0.14548 5 1.28 0.06453 表 2 改性MCC的FTIR图谱带分析
Table 2. Band characteristics of FTIR spectra related to MCC and grafted MCC
Wavenumber/cm−1 Peak attribution 3 200-3 600 —OH stretching vibration absorption peak in hydroxyl group and carboxyl group 2 935 Methylene—C—H stretching vibration absorption peak 1 740 —C=O stretching vibration absorption peak 1 260 Si—C stretching vibration absorption peak 800 Si—O—C stretching vibration absorption peak 560 Cu—O stretching vibration absorption peak 表 3 不同DEA添加量、CuO NPs@MCC–Si–N(OH)2用量、反应时间和MB浓度时催化MB的去除率和去除量
Table 3. Removal rate and amount of MB catalyted by CuO NPs@MCC–Si–N(OH)2 with different DEA addition amounts, dosage of CuO NPs@MCC–Si–N(OH)2, reaction time and concentration of MB
Fixed factor Research factor (variable) Range of variable Removal rate
of MB/%Removal amount
of MB/mgDosage of CuO NPs@MCC–Si–N(OH)2 10 mg
Dosage of NaBH4 10 mg
Reaction time 5 min
MB 30 mL 2 mmol/LDEA addition amount 5wt% 92.50±0.21 17.76±0.04 10wt% 95.16±0.15 18.27±0.03 15wt% 95.70±0.15 18.37±0.03 20wt% 97.15±0.10 18.65±0.02 DEA addition amount 20wt%
Dosage of NaBH4 10 mg
Reaction time 5 min
MB 30 mL 2 mmol/LDosage of CuO NPs@MCC–Si–N(OH)2 10 mg 97.15±0.10 18.65±0.02 20 mg 98.23±0.12 18.86±0.02 30 mg 99.71±0.10 19.14±0.02 40 mg 99.84±0.09 19.17±0.02 50 mg 99.87±0.08 19.18±0.02 DEA addition amount 20wt%
Dosage of CuO NPs@MCC–Si–N(OH)2 30 mg
Dosage of NaBH4 10 mg
MB 30 mL 2 mmol/LReaction time 1 min 92.50±0.41 17.76±0.08 3 min 95.76±0.29 18.39±0.06 5 min 99.71±0.10 19.14±0.02 7 min 99.80±0.07 19.16±0.01 9 min 99.80±0.09 19.16±0.02 Dosage of CuO NPs@MCC–Si–N(OH)2 30 mg
DEA addition amount 20wt%
Dosage of NaBH4 10 mg
Reaction time 5 minConcentration of MB 1 mmol/L 99.78±0.07 9.58±0.01 2 mmol/L 99.71±0.10 19.14±0.02 3 mmol/L 99.18±0.16 28.56±0.03 4 mmol/L 40.53±5.76 15.56±1.11 5 mmol/L 31.37±6.81 15.02±1.31 -
[1] 钱萍萍. 锌系水滑石对亚甲基蓝降解性能的研究[D]. 杭州: 浙江工业大学, 2014.QIAN Pingping. Study on degradation of methylene bule with Zinc based layered double hydroxides[D]. Hangzhou: Zhejiang University of Technology, 2014(in Chinese). [2] 宇振东. 印染废水处理技术与装置[J]. 环境工程学报, 1986, 11(7):10-17.YU Zhendong. Printing and dyeing wastewater treatment technology and device[J]. Chinese Journal of Environmental Engineering,1986,11(7):10-17(in Chinese). [3] 张宇峰, 滕洁, 张雪英, 等. 印染废水处理技术的研究进展[J]. 工业水处理, 2003, 23(4):23-27. doi: 10.3969/j.issn.1005-829X.2003.04.006ZHANG Yufeng, TENG Jie, ZHANG Xueying, et al. Progress of the researches on dyeing wastewater treatment techniques[J]. Industrial Water Treatment,2003,23(4):23-27(in Chinese). doi: 10.3969/j.issn.1005-829X.2003.04.006 [4] 曹风. 印染废水水质特征及处理技术[J]. 科技信息:科学教研, 2007(19):290-300.CAO Feng. Water quality characteristics and treatment technology of printing and dyeing wastewater[J]. Science & Technology Information,2007(19):290-300(in Chinese). [5] 王开花. 玉米秸秆颗粒对亚甲基蓝模拟染料废水的吸附处理研究[D]. 内蒙古: 内蒙古大学, 2013.WANG Kaihua. The study on the adsorption treatment of methylene blue dye wastewater using maize straw particles[D]. Neimenggu: Inner Mongolia University, 2013. [6] 廖钦洪, 刘庆业, 蒙冕武, 等. 稻壳基活性炭的制备及其对亚甲基蓝吸附的研究[J]. 环境工程学报, 2011, 5(11):2447-2452.LIAO Qinhong, LIU Qingye, MENG Mianwu. Study on preparation of rice husk-based activated carbon and its adsorption of methylene blue[J]. Chinese Journal of Environmental Engineering,2011,5(11):2447-2452(in Chinese). [7] 陈娴, 高永, 徐旭, 等. FeY催化剂光助Fenton法降解亚甲基蓝染料废水[J]. 环境科学与技术, 2012, 35(02):139-142. doi: 10.3969/j.issn.1003-6504.2012.02.030CHEN Xian, GAO Yong, XU Xu, et al. Degradation of dye methylene blue wastewater by photo-Fenton reaction using FeY catalyst[J]. Environmental Science & Technology,2012,35(02):139-142(in Chinese). doi: 10.3969/j.issn.1003-6504.2012.02.030 [8] CHEVAL N, GINDY N, FLOWKES C, et al. Polyamide 66 microspheres metallised within situsynthesised gold nanoparticles for a catalytic application[J]. Nanoscale Research Letters,2012,7(1):182-190. doi: 10.1186/1556-276X-7-182 [9] 侯永发. 微晶纤维素的研究与应用[J]. 林产化学与工业, 1993(2):169-175.HOU Yongfa. The research work and practical application of microcrystalline cellulose(review)[J]. Chemistry and Industry of Forest Products,1993(2):169-175(in Chinese). [10] DOW W P, WANG Y P, HUANG T J. Yttria-stabilized zirconia supported copper oxide catalyst: I. Effect of oxygen vacancy of support on copper oxide reduction[J]. Journal of Catalysis,1996,160(2):171-182. doi: 10.1006/jcat.1996.0136 [11] HADI A, PARIA J, LALEH M. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties[J]. Carbohydrate Polymers,2018,186:273-281. doi: 10.1016/j.carbpol.2018.01.067 [12] 李季, 杨春晖, 张磊, 等. 3-氯丙基三甲氧基硅烷合成新方法的研究[J]. 材料科学与工艺, 2011, 19(2):135-139. doi: 10.11951/j.issn.1005-0299.20110228LI Ji, YANG Chunhui, ZHANG Lei, et al. Studies on a synthetic novel technology of 3-chloropropyltrimethoxysilane[J]. Materials Science &Technology,2011,19(2):135-139(in Chinese). doi: 10.11951/j.issn.1005-0299.20110228 [13] NASROLLAHZADEH M, ISSAABADI Z, SAJADI S M. Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water[J]. RSC Advances,2018,8(49):27631-27644. doi: 10.1039/C8RA04368J [14] 张美云, 强丹丹, 李金宝, 等. 微晶纤维素制备过程中纤维素结构与形态特征的变化[J]. 中国造纸, 2016, 35(6):28-32.ZHANG Meiyun, QIANG Dandan, LI Jinbao, et al. Changes of structure and morphological characteristics of cellulose during[J]. China Pulp & Paper,2016,35(6):28-32(in Chinese). [15] AMAL E, FEDERICO G, AMAR D, et al. Natural α-Fe2O3 as an efficient catalyst for the p-nitrophenol reduction[J]. Materials Science & Engineering B,2018,229:126-134. [16] DUAN C, LIU C R, MENG X, et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOF-199s nanocatalysts for catalyticreduction of 4-nitrophenol[J]. Applied Organometallic Chemistry,2019,1:1-10. [17] CHRISTENSEN H, SEHESTED K, CORFITZEN H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures[J]. The Journal of Physical Chemistry B,1982,86(9):1588-1590. doi: 10.1021/j100206a023 [18] MCGINNIS B D, ADAMS V D, MIDDLEBROOKS E J. Evaluation of methylene blue and riboflavin for the photosensitized degradation of ethylene glycol[J]. Environment International,1999,25(8):953-959. doi: 10.1016/S0160-4120(99)00065-3 [19] 叶瑞荣, 汪朝阳, 杨凯, 等. 二乙醇胺改性聚乳酸的直接熔融聚合法合成及其表征[J]. 化学通报, 1999, 25(8):953-959.YE Ruirong, WANG Zhaoyang, YANG Kai, et al. Direct melt polycondensation and characterization of polylactic acid modified by diethanolamine[J]. Chemistry,1999,25(8):953-959(in Chinese). [20] 付育才. 纳米氧化铜的制备及其性质的研究[D]. 曲阜: 曲阜师范大学, 2013.FU Yucai. Preparation and properties of nano-copper oxide[D].Qufu: Qufu Normal University, 2013(in Chinese). [21] 张帆, 杨俊玲. 纳米CuO的制备及其表面改性[J]. 辽宁化工, 2008(10):651-654. doi: 10.3969/j.issn.1004-0935.2008.10.002ZHANG Fan, YANG Junling. Preparation and surface modification of nano-CuO[J]. Liaoning Chemical Industry,2008(10):651-654(in Chinese). doi: 10.3969/j.issn.1004-0935.2008.10.002 [22] BAE S, GIM S, KIM H, et al. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol[J]. Applied Catalysis B Environmental,2016,182:541-549. doi: 10.1016/j.apcatb.2015.10.006 [23] 胡亿明, 蒋剑春, 孙云娟, 等. 纤维素与半纤维素热解过程的相互影响[J]. 林产化学与工业, 2014, 34(4):1-8.HU Yiming, JIANG Jianchun, SUN Yunjuan, et al. Interaction between cellulose and hemicellulose pyrolysis process[J]. Forest Chemicals and Industry,2014,34(4):1-8(in Chinese). [24] 徐惠, 黄剑, 陈泳, 等. 聚苯胺/氧化铜纳米复合材料的制备及抗菌性能[J]. 高分子材料科学与工程, 2011, 27(10):173-176.XU Hui, HUANG Jian, CHEN Yong, et al. Preparation and antibacterial properties of polyaniline/copper oxide nanocomposites[J]. Polymer Materials & Science Engineering,2011,27(10):173-176(in Chinese). [25] LI Z, JIA Z, NI T, et al. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction[J]. Applied Surface Science,2017,1(426):160-168. [26] GENG Q, DU J. Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles[J]. RSC Advances,2014,4(32):16425. doi: 10.1039/C4RA01866D