Preparation of poly 3,4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors
-
摘要: 通过一步法将单体3,4-乙烯二氧噻吩(EDOT)电化学聚合到具有高导电率和大比表面积的纳米多孔金(NPG)上,成功制备了具有完美核壳结构的聚3,4-乙烯二氧噻吩/纳米多孔金(PEDOT/NPG)复合电极材料。通过SEM、TEM、Raman和X射线能谱仪对复合电极材料的形貌、微观结构、振动特性和元素组成进行了分析和表征。使用电化学工作站对其电化学性能进行了系统的研究。在三电极体系中,PEDOT/NPG复合电极材料在3 A/g的低电流密度下,质量比电容可以达到555 F/g,其能量密度和功率密度分别为177.58 W·h/kg和1.73 kW/kg。同时该电极材料经过2 000次循环伏安测试后仍然可以保持最大电容的91.5%,电化学性能优异。
-
关键词:
- 纳米多孔金 /
- 3,4-乙烯二氧噻吩 /
- 比电容 /
- 循环稳定性 /
- 电化学性能
Abstract: The poly 3,4-ethylenedioxythiophene/nanoporous gold (PEDOT/NPG) composite electrode materials were prepared by electrochemically polymerizing monomer 3,4-ethylenedioxythiophene (EDOT) onto NPG with high conductivity and large specific surface area by one-step method. The scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectroscopy (Raman) and X-ray energy spectrometer were used to analyze the morphological structure and elemental composition of the composite electrode material. The electrochemical performance of the electrochemical workstation was studied systematically. The PEDOT/NPG electrode material has a mass specific capacitance of 555 F/g at low current density of 3 A/g, and its energy density and power density are 177.58 W·h/kg and 1.73 kW/kg, respectively. The electrode material can still maintain 91.5% of the maximum capacitance after 2 000 cyclic voltammetry test and has excellent electrochemical performance. -
图 2 NPG的SEM图像((a)、(b))和不同电镀圈数的PEDOT/NPG复合电极材料的SEM图像:(c) PEDOT/NPG-1;(d) PEDOT/NPG-3;(e) PEDOT/NPG-5;(f) PEDOT/NPG-10;(g) PEDOT/NPG-15; (h) PEDOT/NPG-20
Figure 2. SEM images of the NPG morphology at different magnifications ((a), (b)) and SEM images of PEDOT/NPG composite electrode materials with different plating cycles: (c)PEDOT/NPG-1; (d) PEDOT/NPG-3; (e) PEDOT/NPG-5; (f) PEDOT/NPG-10; (g) PEDOT/NPG-15;(h) PEDOT/NPG-20
图 5 不同电镀圈数的PEDOT/NPG复合电极材料在100 mV/s的扫描速率下的伏安曲线(a)和PEDOT/NPG-1在10 mV/s至100 mV/s的扫描速率下的伏安曲线(b)以及PEDOT/NPG-1复合电极材料的质量比电容与扫描速率的关系(c)
Figure 5. Voltammetry curves of PEDOT/NPG composite electrode materials with different plating cycles at a scanning rate of 100 mV/s (a) and PEDOT/NPG-1 at a scanning rate of 10 mV/s to 100 mV/s as well as relationship between mass specific capacitance and scanning rate of PEDO/NPG-1 (c)
图 6 PEDOT/NPG复合电极材料在1 mol/L HClO4电解质中的超电性能((a) PEDOT/NPG-1在不同电流密度下的恒电流充电/放电曲线;(b) PEDOT/NPG在不同电流密度下的比电容;(c) PEDOT/NPG-1在不同放电电流密度下的内阻;(d) PEDOT/NPG-1的Ragone图及其他文献[27-33])
Figure 6. Supercapacitance performance of PEDOT/NPG composite electrode material in 1 mol/L HClO4 electrolyte ((a) Galvanostatic charge/discharge curves of PEDOT/NPG-1 at different current densities; (b) Specific capacitance of PEDOT/NPG obtained at different current densities; (c) Internal resistance of PEDOT/NPG-1 at different discharge current densities; (d) Ragone plots of the PEDOT/NPG-l and others from the literatures[27-33])
表 1 不同电镀圈数的聚3,4-乙烯二氧噻吩/纳米多孔金(PEDOT/NPG)复合电极对应的书写方式
Table 1. Corresponding writing methods for poly 3,4-ethylenedioxythiophene/nanoporous gold (PEDOT/NPG) composite electrodes with different plating cycles
Plating cycle Writing method 1 PEDOT/NPG-1 3 PEDOT/NPG-3 5 PEDOT/NPG-5 10 PEDOT/NPG-10 15 PEDOT/NPG-15 20 PEDOT/NPG-20 -
[1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials,2017,16(1):16-22. doi: 10.1038/nmat4834 [2] SINGH S, JAIN S, VENKATESWARAN P S, et al. Hydrogen: A sustainable fuel for future of the transport sector[J]. Renewable and Sustainable Energy Reviews,2015,51:623-633. doi: 10.1016/j.rser.2015.06.040 [3] RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013 [4] WANG J G, KANG F, WEI B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science,2015,74:51-124. doi: 10.1016/j.pmatsci.2015.04.003 [5] DU W, WANG X, ZHAN J, et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,296:907-915. doi: 10.1016/j.electacta.2018.11.074 [6] 吴可嘉, 董丽敏, 张琬祺, 等. 用于超级电容器的还原氧化石墨烯/NiMnO复合材料的电化学性能[J]. 复合材料学报, 2018, 35(5):1260-1268.WU K J, DONG L M, ZHANG W Q, et al. Electrochemical performance of reduced graphene oxide/NiMnO compo-sites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(5):1260-1268(in Chinese). [7] KALAMBATE P K, DAR R A, KARNA S P, et al. High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode[J]. Journal of Power Sources,2015,276:262-270. doi: 10.1016/j.jpowsour.2014.11.130 [8] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. [9] 李赵华, 刘成宝, 钱君超, 等. 超级电容器用CeO2-MnO/3D石墨烯复合材料的制备[J]. 复合材料学报, 2017, 34(2):423-429.LI Z H, LIU C B, QIAN J C, et al. Preparation of CeO2-MnO/3D graphene composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2017,34(2):423-429(in Chinese). [10] KIM S I, KIM S W, JUNG K, et al. Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density[J]. Nano Energy,2016,24:17-24. doi: 10.1016/j.nanoen.2016.03.027 [11] CHEN L Y, KANG J L, HOU Y, et al. High-energy-densitynonaqueous MnO2@nanoporous gold based supercapacitors[J]. Journal of Materials Chemistry A,2013,1(32):9202-9207. doi: 10.1039/c3ta11480e [12] XU J, WANG K, ZU S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano,2010,4(9):5019-5026. doi: 10.1021/nn1006539 [13] LIU R, WANG J, SUN T, et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self-charging power unit with a total efficiency of 10.5%[J]. Nano Letters,2017,17(7):4240-4247. doi: 10.1021/acs.nanolett.7b01154 [14] AMBADE R B, AMBADE S B, SALUNKHE R R, et al. Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density[J]. Journal of Materials Chemistry A,2016,4(19):7406-7415. doi: 10.1039/C6TA00683C [15] SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources,2011,196(1):1-12. doi: 10.1016/j.jpowsour.2010.06.084 [16] RYU K S, KIM K M, PARK N G, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes[J]. Journal of Power Sources,2002,103(2):305-309. doi: 10.1016/S0378-7753(01)00862-X [17] ROBERTS M E, WHEELER D R, MCKENZIE B B, et al. High specific capacitance conducting polymer supercapacitor electrodes based on poly (tris (thiophenylphenyl) amine)[J]. Journal of Materials Chemistry,2009,19(38):6977-6979. doi: 10.1039/b916666a [18] LEI C, WILSON P, LEKAKOU C. Effect of poly (3,4-ethylenedioxythiophene)(PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors[J]. Journal of Power Sources,2011,196(18):7823-7827. doi: 10.1016/j.jpowsour.2011.03.070 [19] ARADILLA D, ESTRANY F, ARMELIN E, et al. Ultraporous poly (3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor[J]. Thin Solid Films,2012,520(13):4402-4409. doi: 10.1016/j.tsf.2012.02.058 [20] TONG L, SKORENKO K H, FAUCETT A C, et al. Vapor-phase polymerization of poly (3,4-ethylenedioxythiophene)(PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors[J]. Journal of Power Sources,2015,297:195-201. doi: 10.1016/j.jpowsour.2015.06.128 [21] LIU Y H, XU J L, SHEN S, et al. High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications[J]. Journal of Materials Chemistry A,2017,5(19):9032-9041. doi: 10.1039/C7TA01947E [22] WANG N, HAN G, SONG H, et al. Integrated flexible supercapacitor based on poly (3, 4-ethylene dioxythiophene) deposited on Au/porous polypropylene film/Au[J]. Journalof Power Sources,2018,395:228-236. doi: 10.1016/j.jpowsour.2018.05.074 [23] LIU G, SHI Y, ZHOU C, et al. A cross-linked sheet structured poly (3,4-ethylenedioxythiophene) grown on Ni foam: Morphology control and application for long-life cyclic asymmetric supercapacitor[J]. International Journal of Hydrogen Energy,2020,45(11):6120-6127. [24] LANG X, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology,2011,6(4):232-236. doi: 10.1038/nnano.2011.13 [25] MENG F, DING Y. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities[J]. Advanced Materials,2011,23(35):4098-4102. doi: 10.1002/adma.201101678 [26] KANG J, CHEN L, HOU Y, et al. Electroplated thick manganese oxide films with ultrahigh capacitance[J]. Advanced Energy Materials,2013,3(7):857-863. doi: 10.1002/aenm.201201046 [27] ZHANG S W, YIN B S, LIU C, et al. Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor[J]. Chemical Engineering Journal,2017,312:296-305. doi: 10.1016/j.cej.2016.11.144 [28] XU K, LI W, LIU Q, et al. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2014,2(13):4795-4802. doi: 10.1039/c3ta14647b [29] WAN C, JIAO Y, LI J. A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors[J]. Journal of Materials Chemistry A,2017,5(33):17267-17278. doi: 10.1039/C7TA04994C [30] JIA L, SHI Y, ZHANG Q, et al. Green synthesis of ultrafine Methyl-cellulose-derived porous carbon/MnO2 nanowires for asymmetric supercapacitors and flexible pattern stamping[J]. Applied Surface Science,2018,462:923-931. doi: 10.1016/j.apsusc.2018.08.213 [31] SU X L, FU L, CHENG M Y, et al. 3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors[J]. Applied Surface Science,2017,426:924-932. doi: 10.1016/j.apsusc.2017.07.251 [32] JIANG L, SUI Y, QI J, et al. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-rGO films for high energy density asymmetric supercapacitor[J]. Applied Surface Science,2017,426:148-159. doi: 10.1016/j.apsusc.2017.07.175 [33] TANG Z, TANG C, GONG H. A high energy density asymmetric supercapacitor fromnano-architectured Ni(OH)2/carbon nanotube electrodes[J]. Advanced Functional Materials,2012,22(6):1272-1278. doi: 10.1002/adfm.201102796 [34] FAN Z, YAN J, WEI T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced Functional Materials,2011,2(12):2366-2375. [35] HOU Y, CHEN L, ZHANG L, et al. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors[J]. Journal of Power Sources,2013,225:304-310. doi: 10.1016/j.jpowsour.2012.10.067