留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚3,4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用

杨云强 张佳丽 章海霞 侯莹

杨云强, 张佳丽, 章海霞, 等. 聚3,4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用[J]. 复合材料学报, 2020, 37(12): 3160-3167. doi: 10.13801/j.cnki.fhclxb.20200403.001
引用本文: 杨云强, 张佳丽, 章海霞, 等. 聚3,4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用[J]. 复合材料学报, 2020, 37(12): 3160-3167. doi: 10.13801/j.cnki.fhclxb.20200403.001
YANG Yunqiang, ZHANG Jiali, ZHANG Haixia, et al. Preparation of poly 3,4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3160-3167. doi: 10.13801/j.cnki.fhclxb.20200403.001
Citation: YANG Yunqiang, ZHANG Jiali, ZHANG Haixia, et al. Preparation of poly 3,4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3160-3167. doi: 10.13801/j.cnki.fhclxb.20200403.001

聚3,4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用

doi: 10.13801/j.cnki.fhclxb.20200403.001
基金项目: 国家自然科学基金(51703150;51701137);山西省面上自然基金(201701D121043)
详细信息
    通讯作者:

    侯莹,博士,副教授,硕士生导师,研究方向为超级电容器 E-mail:yinghou@126.com

  • 中图分类号: TB332

Preparation of poly 3,4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors

  • 摘要: 通过一步法将单体3,4-乙烯二氧噻吩(EDOT)电化学聚合到具有高导电率和大比表面积的纳米多孔金(NPG)上,成功制备了具有完美核壳结构的聚3,4-乙烯二氧噻吩/纳米多孔金(PEDOT/NPG)复合电极材料。通过SEM、TEM、Raman和X射线能谱仪对复合电极材料的形貌、微观结构、振动特性和元素组成进行了分析和表征。使用电化学工作站对其电化学性能进行了系统的研究。在三电极体系中,PEDOT/NPG复合电极材料在3 A/g的低电流密度下,质量比电容可以达到555 F/g,其能量密度和功率密度分别为177.58 W·h/kg和1.73 kW/kg。同时该电极材料经过2 000次循环伏安测试后仍然可以保持最大电容的91.5%,电化学性能优异。

     

  • 图  1  100 mV/s的扫描速率下PEDOT/NPG-1 (a)和PEDOT/NPG-20 (b)的电镀循环伏安曲线及PEDOT的沉积质量与电镀圈数的关系(c)

    Figure  1.  PEDOT/NPG-1 (a) and PEDOT/NPG-20 (b) plating cycle voltammetry curves and relationship between plating cycles and deposit quality of PEDOT (c) at a scanning rate of 100 mV/s

    图  2  NPG的SEM图像((a)、(b))和不同电镀圈数的PEDOT/NPG复合电极材料的SEM图像:(c) PEDOT/NPG-1;(d) PEDOT/NPG-3;(e) PEDOT/NPG-5;(f) PEDOT/NPG-10;(g) PEDOT/NPG-15; (h) PEDOT/NPG-20

    Figure  2.  SEM images of the NPG morphology at different magnifications ((a), (b)) and SEM images of PEDOT/NPG composite electrode materials with different plating cycles: (c)PEDOT/NPG-1; (d) PEDOT/NPG-3; (e) PEDOT/NPG-5; (f) PEDOT/NPG-10; (g) PEDOT/NPG-15;(h) PEDOT/NPG-20

    图  3  PEDOT/NPG-1复合电极材料的EDS能谱图

    Figure  3.  EDS maps of PEDOT/NPG-1 composite electrode material

    图  4  PEDOT/NPG-1复合电极材料微观形貌的低倍 (a)和高倍(b) TEM图像

    Figure  4.  TEM images of PEDOT/NPG-1 composite electrode material morphology at low magnification (a) and high magnification (b)

    图  5  不同电镀圈数的PEDOT/NPG复合电极材料在100 mV/s的扫描速率下的伏安曲线(a)和PEDOT/NPG-1在10 mV/s至100 mV/s的扫描速率下的伏安曲线(b)以及PEDOT/NPG-1复合电极材料的质量比电容与扫描速率的关系(c)

    Figure  5.  Voltammetry curves of PEDOT/NPG composite electrode materials with different plating cycles at a scanning rate of 100 mV/s (a) and PEDOT/NPG-1 at a scanning rate of 10 mV/s to 100 mV/s as well as relationship between mass specific capacitance and scanning rate of PEDO/NPG-1 (c)

    图  6  PEDOT/NPG复合电极材料在1 mol/L HClO4电解质中的超电性能((a) PEDOT/NPG-1在不同电流密度下的恒电流充电/放电曲线;(b) PEDOT/NPG在不同电流密度下的比电容;(c) PEDOT/NPG-1在不同放电电流密度下的内阻;(d) PEDOT/NPG-1的Ragone图及其他文献[27-33])

    Figure  6.  Supercapacitance performance of PEDOT/NPG composite electrode material in 1 mol/L HClO4 electrolyte ((a) Galvanostatic charge/discharge curves of PEDOT/NPG-1 at different current densities; (b) Specific capacitance of PEDOT/NPG obtained at different current densities; (c) Internal resistance of PEDOT/NPG-1 at different discharge current densities; (d) Ragone plots of the PEDOT/NPG-l and others from the literatures[27-33])

    图  7  扫描速率100 mV/s时PEDOT/NPG-1电极在1 mol/L HClO4溶液中经过2 000次循环后的电容保持率

    Figure  7.  Capacitance retention of the PEDOT/NPG-1 electrode after 2 000 cycles in 1 mol/L HClO4 solution at a scanning rate of 100 mV/s

    图  8  PEDOT/NPG-1复合电极在电化学循环之前和2 000次循环之后的拉曼光谱

    Figure  8.  Raman spectra of PEDOT/NPG-1 composite electrode before electrochemical cycle and after 2 000 cycles

    表  1  不同电镀圈数的聚3,4-乙烯二氧噻吩/纳米多孔金(PEDOT/NPG)复合电极对应的书写方式

    Table  1.   Corresponding writing methods for poly 3,4-ethylenedioxythiophene/nanoporous gold (PEDOT/NPG) composite electrodes with different plating cycles

    Plating cycleWriting method
    1PEDOT/NPG-1
    3PEDOT/NPG-3
    5PEDOT/NPG-5
    10PEDOT/NPG-10
    15PEDOT/NPG-15
    20 PEDOT/NPG-20
    下载: 导出CSV
  • [1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials,2017,16(1):16-22. doi: 10.1038/nmat4834
    [2] SINGH S, JAIN S, VENKATESWARAN P S, et al. Hydrogen: A sustainable fuel for future of the transport sector[J]. Renewable and Sustainable Energy Reviews,2015,51:623-633. doi: 10.1016/j.rser.2015.06.040
    [3] RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013
    [4] WANG J G, KANG F, WEI B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science,2015,74:51-124. doi: 10.1016/j.pmatsci.2015.04.003
    [5] DU W, WANG X, ZHAN J, et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,296:907-915. doi: 10.1016/j.electacta.2018.11.074
    [6] 吴可嘉, 董丽敏, 张琬祺, 等. 用于超级电容器的还原氧化石墨烯/NiMnO复合材料的电化学性能[J]. 复合材料学报, 2018, 35(5):1260-1268.

    WU K J, DONG L M, ZHANG W Q, et al. Electrochemical performance of reduced graphene oxide/NiMnO compo-sites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(5):1260-1268(in Chinese).
    [7] KALAMBATE P K, DAR R A, KARNA S P, et al. High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode[J]. Journal of Power Sources,2015,276:262-270. doi: 10.1016/j.jpowsour.2014.11.130
    [8] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
    [9] 李赵华, 刘成宝, 钱君超, 等. 超级电容器用CeO2-MnO/3D石墨烯复合材料的制备[J]. 复合材料学报, 2017, 34(2):423-429.

    LI Z H, LIU C B, QIAN J C, et al. Preparation of CeO2-MnO/3D graphene composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2017,34(2):423-429(in Chinese).
    [10] KIM S I, KIM S W, JUNG K, et al. Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density[J]. Nano Energy,2016,24:17-24. doi: 10.1016/j.nanoen.2016.03.027
    [11] CHEN L Y, KANG J L, HOU Y, et al. High-energy-densitynonaqueous MnO2@nanoporous gold based supercapacitors[J]. Journal of Materials Chemistry A,2013,1(32):9202-9207. doi: 10.1039/c3ta11480e
    [12] XU J, WANG K, ZU S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano,2010,4(9):5019-5026. doi: 10.1021/nn1006539
    [13] LIU R, WANG J, SUN T, et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self-charging power unit with a total efficiency of 10.5%[J]. Nano Letters,2017,17(7):4240-4247. doi: 10.1021/acs.nanolett.7b01154
    [14] AMBADE R B, AMBADE S B, SALUNKHE R R, et al. Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density[J]. Journal of Materials Chemistry A,2016,4(19):7406-7415. doi: 10.1039/C6TA00683C
    [15] SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources,2011,196(1):1-12. doi: 10.1016/j.jpowsour.2010.06.084
    [16] RYU K S, KIM K M, PARK N G, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes[J]. Journal of Power Sources,2002,103(2):305-309. doi: 10.1016/S0378-7753(01)00862-X
    [17] ROBERTS M E, WHEELER D R, MCKENZIE B B, et al. High specific capacitance conducting polymer supercapacitor electrodes based on poly (tris (thiophenylphenyl) amine)[J]. Journal of Materials Chemistry,2009,19(38):6977-6979. doi: 10.1039/b916666a
    [18] LEI C, WILSON P, LEKAKOU C. Effect of poly (3,4-ethylenedioxythiophene)(PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors[J]. Journal of Power Sources,2011,196(18):7823-7827. doi: 10.1016/j.jpowsour.2011.03.070
    [19] ARADILLA D, ESTRANY F, ARMELIN E, et al. Ultraporous poly (3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor[J]. Thin Solid Films,2012,520(13):4402-4409. doi: 10.1016/j.tsf.2012.02.058
    [20] TONG L, SKORENKO K H, FAUCETT A C, et al. Vapor-phase polymerization of poly (3,4-ethylenedioxythiophene)(PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors[J]. Journal of Power Sources,2015,297:195-201. doi: 10.1016/j.jpowsour.2015.06.128
    [21] LIU Y H, XU J L, SHEN S, et al. High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications[J]. Journal of Materials Chemistry A,2017,5(19):9032-9041. doi: 10.1039/C7TA01947E
    [22] WANG N, HAN G, SONG H, et al. Integrated flexible supercapacitor based on poly (3, 4-ethylene dioxythiophene) deposited on Au/porous polypropylene film/Au[J]. Journalof Power Sources,2018,395:228-236. doi: 10.1016/j.jpowsour.2018.05.074
    [23] LIU G, SHI Y, ZHOU C, et al. A cross-linked sheet structured poly (3,4-ethylenedioxythiophene) grown on Ni foam: Morphology control and application for long-life cyclic asymmetric supercapacitor[J]. International Journal of Hydrogen Energy,2020,45(11):6120-6127.
    [24] LANG X, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology,2011,6(4):232-236. doi: 10.1038/nnano.2011.13
    [25] MENG F, DING Y. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities[J]. Advanced Materials,2011,23(35):4098-4102. doi: 10.1002/adma.201101678
    [26] KANG J, CHEN L, HOU Y, et al. Electroplated thick manganese oxide films with ultrahigh capacitance[J]. Advanced Energy Materials,2013,3(7):857-863. doi: 10.1002/aenm.201201046
    [27] ZHANG S W, YIN B S, LIU C, et al. Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor[J]. Chemical Engineering Journal,2017,312:296-305. doi: 10.1016/j.cej.2016.11.144
    [28] XU K, LI W, LIU Q, et al. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2014,2(13):4795-4802. doi: 10.1039/c3ta14647b
    [29] WAN C, JIAO Y, LI J. A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors[J]. Journal of Materials Chemistry A,2017,5(33):17267-17278. doi: 10.1039/C7TA04994C
    [30] JIA L, SHI Y, ZHANG Q, et al. Green synthesis of ultrafine Methyl-cellulose-derived porous carbon/MnO2 nanowires for asymmetric supercapacitors and flexible pattern stamping[J]. Applied Surface Science,2018,462:923-931. doi: 10.1016/j.apsusc.2018.08.213
    [31] SU X L, FU L, CHENG M Y, et al. 3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors[J]. Applied Surface Science,2017,426:924-932. doi: 10.1016/j.apsusc.2017.07.251
    [32] JIANG L, SUI Y, QI J, et al. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-rGO films for high energy density asymmetric supercapacitor[J]. Applied Surface Science,2017,426:148-159. doi: 10.1016/j.apsusc.2017.07.175
    [33] TANG Z, TANG C, GONG H. A high energy density asymmetric supercapacitor fromnano-architectured Ni(OH)2/carbon nanotube electrodes[J]. Advanced Functional Materials,2012,22(6):1272-1278. doi: 10.1002/adfm.201102796
    [34] FAN Z, YAN J, WEI T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced Functional Materials,2011,2(12):2366-2375.
    [35] HOU Y, CHEN L, ZHANG L, et al. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors[J]. Journal of Power Sources,2013,225:304-310. doi: 10.1016/j.jpowsour.2012.10.067
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  943
  • HTML全文浏览量:  365
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 录用日期:  2020-03-18
  • 网络出版日期:  2020-04-03
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回