留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实验分析帽型加筋壁板填充芯材下方蒙皮褶皱成因

张栋梁 薛向晨 梁宪珠 湛利华 杨晓波 郑晓玲

张栋梁, 薛向晨, 梁宪珠, 等. 实验分析帽型加筋壁板填充芯材下方蒙皮褶皱成因[J]. 复合材料学报, 2020, 37(12): 3064-3070. doi: 10.13801/j.cnki.fhclxb.20200323.002
引用本文: 张栋梁, 薛向晨, 梁宪珠, 等. 实验分析帽型加筋壁板填充芯材下方蒙皮褶皱成因[J]. 复合材料学报, 2020, 37(12): 3064-3070. doi: 10.13801/j.cnki.fhclxb.20200323.002
ZHANG Dongliang, XUE Xiangchen, LIANG Xianzhu, et al. Experimental analysis of the causes of skin wrinkles below the radius filler of hat-stiffened skins[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3064-3070. doi: 10.13801/j.cnki.fhclxb.20200323.002
Citation: ZHANG Dongliang, XUE Xiangchen, LIANG Xianzhu, et al. Experimental analysis of the causes of skin wrinkles below the radius filler of hat-stiffened skins[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3064-3070. doi: 10.13801/j.cnki.fhclxb.20200323.002

实验分析帽型加筋壁板填充芯材下方蒙皮褶皱成因

doi: 10.13801/j.cnki.fhclxb.20200323.002
详细信息
    通讯作者:

    薛向晨,硕士,高级工程师,研究方向为复合材料 E-mail:c31050201@sina.com

  • 中图分类号: TB332

Experimental analysis of the causes of skin wrinkles below the radius filler of hat-stiffened skins

  • 摘要: 研究了碳纤维/环氧树脂复合材料帽型加筋壁板在长桁先固化、蒙皮未固化的共胶接工艺下,填充芯材下方蒙皮褶皱的形成过程及产生原因。测试了预浸料的树脂流变特性,由压力监测设备对填充芯材下方蒙皮内部压力进行监测获得了其内部压力的分布,采用金相显微镜对褶皱进行了表征。结果表明:在树脂流动的窗口期,当填充芯材下方蒙皮内部出现压力差时,树脂向低压区流动并聚集,导致褶皱产生。

     

  • 图  1  帽型加筋壁板及填充芯材局部示意图

    Figure  1.  Schematic diagram of hat-stiffened skins and radius filler

    图  2  压力传感器结构

    Figure  2.  Pressure sensor structure

    图  3  填充芯材下方蒙皮内部的测量点位置示意图

    Figure  3.  Schematic diagram of position of the measuring point inside the skin under the radius filler

    图  4  填充芯材下方蒙皮褶皱的评价方法

    Figure  4.  Evaluation method of skin wrinkles under the radius filler

    t—Thickness of skin; L—Length of wrinkles; D—Distance of wrinkles

    图  5  选用预浸料的环氧树脂的流变曲线

    Figure  5.  Rheological curves of epoxy resin of the selected prepreg

    图  6  截面积偏差δS分别为0%、20%和50%的填充芯材下方蒙皮内部的压强

    Figure  6.  Pressure inside the skin under the radius filler with cross-sectional deviation δS of 0%, 20% and 50%

    图  7  蒙皮平整区和蒙皮褶皱区位置

    Figure  7.  Skin flat and wrinkle positions

    图  8  填充芯材截面积偏差为50%实验组不同位置的金相图对比

    Figure  8.  Comparison of metallographic diagrams in different positions of the experimental group with the 50% radius filler cross-sectional deviation

    图  9  不同位置的层间树脂相对厚度

    Figure  9.  Relative thickness of resin between the layers in different positions

    图  10  填充芯材下方蒙皮褶皱的形成过程示意图

    Figure  10.  Formation process of skin wrinkles under the radius filler

    表  1  填充芯材下方蒙皮内部的压强对比

    Table  1.   Comparison of pressure inside the skin under the radius filler

    Radius filler cross-
    sectional deviation
    Average pressure/kPaPressure
    difference/kPa
    1#2#3#4#
    0% 688.31 684.74 670.53 672.42 17.78
    20% 699.29 679.99 685.31 670.26 29.04
    50% 689.08 661.97 665.19 656.17 32.91
    下载: 导出CSV

    表  2  蒙皮平整区和褶皱区厚度对比

    Table  2.   Comparison of skin thickness in flat and wrinkle positions

    Radius filler cross-sectional deviationAreaSkin thickness/mmTheoretical thickness/mm
    0% Flat 8.04 8.22
    Wrinkle 8.96 8.22
    20% Flat 8.03 8.22
    Wrinkle 9.16 8.22
    50% Flat 8.02 8.22
    Wrinkle 9.42 8.22
    下载: 导出CSV
  • [1] 王犇. 复合材料的应用与展望[J]. 中国新技术新产品, 2018(06):40-41. doi: 10.3969/j.issn.1673-9957.2018.06.023

    WANG Ben. Application and prospect of composite materials[J]. China New Technology and Products,2018(06):40-41(in Chinese). doi: 10.3969/j.issn.1673-9957.2018.06.023
    [2] 周长庚, 荀国立, 邱启艳, 等. 航空复合材料整体成型技术应用现状与分析[J]. 新材料产业, 2016(5):52-57. doi: 10.3969/j.issn.1008-892X.2016.05.011

    ZHOU Changgeng, XUN Guoli, QIU Qiyan, et al. Application status and analysis of aerospace composite material integral molding technology[J]. Advanced Materials Industry,2016(5):52-57(in Chinese). doi: 10.3969/j.issn.1008-892X.2016.05.011
    [3] 熊文磊, 苏佳智, 刘小林, 等. 热压罐工艺帽型加筋壁板长桁胶接变形问题[J]. 航空学报, 2019, 40(12):423108.

    XIONG Wenlei, SU Jiazhi, LIU Xiaolin, et al. Bonding deformation of long truss of hat-shaped stiffened wall plate in autoclave process[J]. Acta Aeronautica et Astronautica Sinica,2019,40(12):423108(in Chinese).
    [4] 李进, 应斌, 郑秀楠. 复合材料超级壁板装配工艺技术研究[J]. 纤维复合材料, 2019, 36(2):39-43.

    LI Jin, YING Bin, ZHENG Xiunan. Research on assembly technology of composite super panel[J]. Fiber Composites,2019,36(2):39-43(in Chinese).
    [5] 谢富原, 王雪明, 李敏, 等. T形加筋板热压罐成型过程压力分布与树脂流动实验研究[J]. 复合材料学报, 2009, 26(6):66-71. doi: 10.3321/j.issn:1000-3851.2009.06.011

    XIE Fuyuan, WANG Xueming, LI Min, et al. Experimental research on pressure distribution and resin flow of T-shaped stiffened plate during autoclave forming[J]. Acta Materiae Compositae Sinica,2009,26(6):66-71(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.06.011
    [6] GUTOWSKI T G, CAI Z, BAUER S, et al. Consolidation experiments for laminate composites[J]. Journal of Compo-site Materials,1987,21(7):650-669. doi: 10.1177/002199838702100705
    [7] GUTOWSKI T G, MORIGAKI T, ZHONG C. The consolidation of laminate composites[J]. Journal of Composite Materials,1987,21(2):172-188. doi: 10.1177/002199838702100207
    [8] DAVE R. A unified approach to modeling resin flow during composite processing[J]. Journal of Composite Materials,1990,24(1):22-41. doi: 10.1177/002199839002400102
    [9] GU Y Z, LI M, ZHANG Z, et al. Numerical simulation and experimental study on consolidation of toughened epoxy resin composite laminates[J]. Journal of Composite Materials,2006,40(24):2257-2277. doi: 10.1177/0021998306062319
    [10] GU Y Z, XIN C, LI M, et al. Resin pressure and resin flow inside tapered laminates during zero-bleeding and bleeding processes[J]. Journal of Reinforced Plastics and Compo-sites,2012,31(4):205-214. doi: 10.1177/0731684411434149
    [11] GANAPATHI A S, JOSHI S C, CHEN Z. Simulation of bleeder flow and curing of thick composites with pressure and temperature dependent properties[J]. Simulation Modelling Practice and Theory,2013,32:64-82. doi: 10.1016/j.simpat.2012.12.002
    [12] SEBASTIEN B, BAILLY C, DEVAUX J, et al. Rheological properties of flowable resin composites and pit and fissure sealants[J]. Dental Materials,2008,24(4):548-555. doi: 10.1016/j.dental.2007.05.019
    [13] HUANG C K. Study on co-cured composite panels with blade-shaped stiffeners[J]. Composites Part A: Applied Science & Manufacturing,2003,34(5):403-410.
    [14] WANG X, XIE F, LI M, et al. Influence of core fillers on resin flow and fiber compaction of cocured skin-to-stiffener structures[J]. Polymer Composites,2010,31(8):1360-1368.
    [15] WANG X, XIE F, LI M, et al. Experimental investigation of the compaction and tensile strength of co-cured skin-to-stiffener structures[J]. Applied Composite Materials,2011,18(5):371-383. doi: 10.1007/s10443-010-9162-y
    [16] 罗刚堂, 李敏, 顾轶卓, 等. 共胶接T型加筋壁板模具设计及成型工艺研究[J]. 玻璃钢/复合材料, 2012(5):58-64. doi: 10.3969/j.issn.1003-0999.2012.05.011

    LUO Gangtang, LI Min, GU Yizhuo, et al. Research on mold design and forming process of co-bonded T-shaped reinforced siding[J]. Fiber Reinforced Plastics/Composites,2012(5):58-64(in Chinese). doi: 10.3969/j.issn.1003-0999.2012.05.011
    [17] KOUSHYAR H, ALAVISOLTANI S, MINAIE B, et al. Effects of variation in autoclave pressure, temperature, and vacuum-application time on porosity and mechanical properties of a carbon fiber/epoxy composite[J]. Journal of Composite Materials,2012,46(16):1985-2004. doi: 10.1177/0021998311429618
    [18] 汪赫男, 张佐光, 顾轶卓, 等. 环氧复合材料层板热压成型孔隙缺陷影响因素[J]. 复合材料学报, 2007, 24(5):55-60. doi: 10.3321/j.issn:1000-3851.2007.05.011

    WANG Henan, ZHANG Zuoguang, GU Yizhuo, et al. Influencing factors of void defects in hot pressing of epoxy composite laminates[J]. Acta Materiae Compositae Sinica,2007,24(5):55-60(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.05.011
    [19] SMITH G D, POURSARTIP A. A comparison of two resin flow models for laminate processing[J]. Journal of Composite Materials,1993,27(17):1695-1711. doi: 10.1177/002199839302701704
    [20] 苏小虎. 含褶皱复合材料层合板的拉伸性能[C]. 风能产业(2018年6月): 中国农业机械工业协会风力机械分会, 2018: 114-117.

    SU Xiaohu. Tensile properties of wrinkled composite laminates[C]. Wind Energy Industry (June 2018): Wind Machinery Branch of China Agricultural Machinery Industry Association, 2018: 114-117(in Chinese).
    [21] 叶梯. 含纤维褶皱复合材料层压板压缩性能研究[C]. 中国复合材料学会、杭州市人民政府. 第三届中国国际复合材料科技大会论文集. 中国复合材料学会、杭州市人民政府: 中国复合材料学会, 2017: 708-714.

    YE Ti. Study on compressive properties of fiber-wrinkled composite laminates[C]. Chinese Composites Society, Hangzhou Municipal People's Government. Proceedings of the Third China International Composites Technology Conference. Chinese Composites Society, Hangzhou People Government: China Composites Society, 2017: 708-714(in Chinese).
    [22] 欧阳佳斯. 带波纹/褶皱类缺陷的纤维增强树脂基复合材料压缩性能研究[D]. 武汉: 武汉理工大学, 2016.

    OUYANG Jiasi. Study on compression properties of fiber-reinforced resin matrix composites with corrugated/wrinkle-like defects[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
    [23] 李韦清, 杨涛, 杨冠侠,等. 内嵌褶皱对自动铺丝层合板构件拉伸性能的影响[J]. 固体火箭技术, 2018, 41(5):621-626.

    LI Weiqing, YANG Tao, YANG Guanxia, et al. Effects of embedded wrinkles on the tensile properties of auto-laminated laminated panel members[J]. Solid Rocket Technology,2018,41(5):621-626(in Chinese).
    [24] 邓帆, 湛利华, 邹靖. 树脂基复合材料帽型加筋构件固化过程压力在线监测研究[J]. 玻璃钢/复合材料, 2018(7):36-41. doi: 10.3969/j.issn.1003-0999.2018.07.013

    DENG Fan, ZHAN Lihua, ZOU Jing. On-line monitoring of pressure during curing process of resin-based composite hat-shaped reinforced members[J]. Fiber Reinforced Plastics/Composites,2018(7):36-41(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.07.013
    [25] 胡江波, 薛向晨, 郑晓玲, 等. 叠层滑移工艺对M21C层压板力学性能的影响[J]. 复合材料学报, 2020, 37(5):1184-1190.

    HU Jiangbo, XUE Xiangchen, ZHENG Xiaoling, et al. Effect of laminated slip process on mechanical properties of M21C laminates[J]. Acta Materiae Compositae Sinica,2020,37(5):1184-1190(in Chinese).
    [26] 薛向晨, 王犇, 胡江波, 等. 大型机身复合材料加筋壁板制造技术及应用[J]. 航空制造技术, 2019, 62(16):88-93.

    XUE Xiangchen, WANG Ben, HU Jiangbo, et al. Manufacturing technology and application of large airframe compo-site material reinforced wallboard[J]. Aeronautical Manufacturing Technology,2019,62(16):88-93(in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1422
  • HTML全文浏览量:  525
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 录用日期:  2020-03-07
  • 网络出版日期:  2020-03-23
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回