Preparation and performance of flame-retardant epoxy resin composite containing phosphorus and nitrogen
-
摘要: 为改善环氧树脂的阻燃性,成功合成了一种含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP)。采用傅里叶变换衰减全反射红外光谱法(ATR-FTIR)、核磁共振(NMR)和元素分析等手段对FRASP的化学结构进行表征。将FRASP添加到双酚A型环氧树脂(DGEBA)中,经4,4’-二氨基二苯甲烷(DDM)固化后,制备出DGEBA-FRASP复合树脂。FRASP质量分数为9wt%的DGEBA-FRASP复合树脂的极限氧指数(LOI)达到35.9%,垂直燃烧(UL94)的等级为V-0级。残炭的形貌和激光拉曼光谱(LRS)分析显示,FRASP促进膨胀、致密、高石墨化程度的多孔炭层的生成。热重分析表明,FRASP改变了DGEBA-FRASP复合树脂的热降解过程,促进了DGEBA-FRASP复合树脂提前热分解,使最大失重率降低,并提高了残炭量。热裂解分析显示,DGEBA-FRASP复合树脂裂解过程中产生了含磷分子和不可燃气体,可稀释O2并抑制燃烧过程中自由基链式反应。FRASP分子中P、N和S的协同作用,改善了DGEBA-FRASP复合树脂的阻燃性能。Abstract: A flame retardant additive with sulfone and phosphaphenanthrene groups (FRASP) was successfully synthesized for improving the flame retardancy of diglycidyl ether of bisphenol A type epoxy resins (DGEBA). The chemical structure of FRASP was characterized by attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance (NMR) and elemental analysis. FRASP was added into DGEBA, and the flame-retardant DGEBA-FRASP composite resins were prepared via thermal curing reaction between 4,4’-diaminodiphenyl methane (DDM) and the mixed DGEBA. When the mass fraction of FRASP is 9wt%, the limiting oxygen index (LOI) reaches 35.9%, and V-0 rating under the vertical combustion (UL94) test is achieved. The morphology and Laser Raman spectroscopy (LRS) analysis of char residues after UL94 test indicate that the addition of FRASP favor the generation of an intumescent, tight and high-graphitization degree char layer with porous structure inside. The thermosgravimetric analysis results reveal that FRASP changes the thermal degradation process of DGEBA-FRASP composite resins and the maximum mass loss rate decreases, which results in a higher residual char. Pyrolysis-gas chromatography/mass spectrometry analysis shows that the phosphorus fragments and nonflammable gas release during DGEBA-FRASP composite resins thermal decomposition, which can dilute the O2 and act as free radical inhibitors in combustion. Owing to the synergistic effect of P, N and S in condensed and gas phase, the DGEBA-FRASP composite resins display improved flame-retardancy.
-
Key words:
- thermosetting resin /
- thermal analysis /
- flame retardant /
- epoxy resin /
- synergism
-
表 1 双酚A型环氧树脂(DGEBA)-FRASP复合树脂的配方及FRASP的质量分数
Table 1. Formulas of diglycidyl ether of bisphenol A(DGEBA)-FRASP composite reins and mass fraction of FRASP
Sample Composition/g MFRASP/wt% DGEBA DDM FRASP Neat DGEBA 100 22 0 0 DGEBA-FRASP3 100 22 3.77 3 DGEBA-FRASP6 100 22 7.79 6 DGEBA-FRASP9 100 22 12.07 9 Notes: DDM—4,4-diaminodiphenyl methane; MFRASP—Mass fraction of FRASP in DGEBA-FRASP composite resins. 表 2 DGEBA和DGEBA-FRASP树脂的垂直燃烧(UL94)和极限氧指数(LOI)测试结果
Table 2. Vertical combustion (UL94) and limiting oxygen index (LOI) test results of DGEBA and DGEBA-FRASP resins
Sample LOI/% t1 +t2/s Dripping Rating DGEBA 24.8 NR Yes No rating DGEBA-FRASP3 33.7 6.1+6.3 No V-1 DGEBA-FRASP6 34.5 4.3+3.0 No V-0 DGEBA-FRASP9 35.9 2.3+1.9 No V-0 Notes: t1—Self-extinguishing time after the first ignition, take the average value of 2 sets of samples; t2—Self-extinguishing time after the second ignition, take the average value of 2 sets of samples; NR—No ranking. 表 3 FRASP、DGEBA和DGEBA-FRASP树脂在空气下的TGA数据
Table 3. TGA data of FRASP, DGEBA and DGEBA-FRASP resins in air atmosphere
Sample T5%/℃ Tmax/℃ Vmax/(%·℃–1) CY700/% DGEBA 362.2 384.7 –1.45 1.90 FRASP 292.1 361.4 –0.46 43.41 DGEBA-FRASP3 343.8 374.6 –1.26 2.85 DGEBA-FRASP6 339.1 368.3 –1.14 3.72 DGEBA-FRASP9 332.4 363.2 –1.13 5.74 Notes: T5%―Temperature at 5% mass loss; Tmax―Temperature at the maximum mass loss rate; Vmax―Maximum mass loss rate; CY700―Char yield at 700℃. 表 4 FRASP、DGEBA和DGEBA-FRASP树脂在N2下的TGA数据
Table 4. TGA data of FRASP, DGEBA and DGEBA-FRASP resins in N2 atmosphere
Sample T5%/℃ Tmax/℃ Vmax/(%·℃–1) CY700/% DGEBA 367.9 387.2 –1.76 16.58 FRASP 310.1 365.3 –0.81 33.40 DGEBA-FRASP3 357.8 382.1 –1.25 19.48 DGEBA-FRASP6 353.9 379.6 –1.19 21.27 DGEBA-FRASP9 341.3 377.1 –1.16 22.96 -
[1] 潘志伟, 马东鹏, 廖雨田, 等. 天然纤维/环氧树脂-混凝土的力学性能及老化规律天然纤维/环氧树脂-混凝土的力学性能及老化规律[J]. 复合材料学报, 2019, 36(6):1510-1519.PAN Zhiwei, MA Dongpeng, LIAO Yutian, et al. Mechanical performance and aging behavior of matural fiber/epoxy polymer-concrete[J]. Acta Materiae Compositae Sinica,2019,36(6):1510-1519(in Chinese). [2] IDDRISSU I, ZHENG H, ROWLAND S M. DC electrical tree growth in epoxy resin and the influence of the size of inceptive AC trees[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(3):1965-1972. [3] 康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.KANG Junming, SUN Liangliang, WANG Jihui, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electionic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese). [4] GUAN Q, YUAN L, ZHANG Y, et al. Improving the mechanical, thermal, dielectric and flame retardancy properties of cyanate ester with the encapsulated epoxy resin-penetrated aligned carbon nanotube bundle[J]. Composites Part B: Engineering,2017,123:81-91. doi: 10.1016/j.compositesb.2017.05.029 [5] 来方, 付海, 赵欧, 等. 聚苯氧基磷酸联苯二酚酯/聚磷酸铵膨胀阻燃剂对环氧树脂阻燃性能影响研究[J]. 高分子学报, 2017(4):692-699.LAI Fang, FU Hai, ZHAO Ou, et al. Influence of poly(biphenyl phenoxy phosphate)/APP on flame retardancy of epoxy resin[J]. Acta Polymerica Sinica,2017(4):692-699(in Chinese). [6] 王春红, 王利剑, 任子龙, 等. SiO-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响[J]. 复合材料学报, 2019, 36(7):1633-1639.WANG Chunhong, WANG Lijian, REN Zilong, et al. Effect of SiO2-bamboo fiber synergistic modification on friction and wear properties of epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1633-1639(in Chinese). [7] XIN D, HAN Q. Study on thermomechanical properties of cross-linked epoxy resin[J]. Molecular Simulation,2015,41(13):1081-1085. doi: 10.1080/08927022.2014.938334 [8] 陈平, 刘胜平, 王德忠. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2011.CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2011(in Chinese). [9] 徐志胜, 贾宏煜, 颜龙, 等. 三氧化钼与有机蒙脱土复配体系在膨胀阻燃环氧树脂中的应用[J]. 安全与环境学报, 2019, 19(3):847-853.XU Z S, JIA H Y, YAN L, et al. Application of the compound system of molybdenum trioxide and organic montmorillonite in intumescent flame retardant epoxy resin[J]. Journal of Safety and Environment,2019,19(3):847-853(in Chinese). [10] PENG D, LIU Y, LIU Y, et al. Preparation of phosphorus-containing phenolic resin and its application in epoxy resin as a curing agent and flame retardant[J]. Polymers for Advanced Technologies,2018,29(4):1294-1302. doi: 10.1002/pat.4241 [11] XIA Y, TANG R, TAO S, et al. Epoxy resin/phosphorus-based microcapsules: Their synergistic effect on flame retardation properties of high-density polyethylene/graphene nanoplatelets composites[J]. Journal of Applied Polymer Science,2018,135(34):46662. doi: 10.1002/app.46662 [12] SHI Y, YU B, ZHENG Y, et al. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin[J]. Journal of Colloid and Interface Science,2018,521:160-171. doi: 10.1016/j.jcis.2018.02.054 [13] XIE M, ZHANG S, DING Y, et al. Synthesis of a heat-resistant DOPO derivative and its application as flame-retardant in engineering plastics[J]. Journal of Applied Polymer Science,2017,134(22):44892. [14] 陈仕梅, 来方, 李霈, 等. 磷杂菲类阻燃剂的合成及其与聚磷酸铵复合膨胀体系对环氧树脂的阻燃性能研究[J]. 高分子学报, 2017(8):1358-1365.CHEN Shimei, LAI Fang , LI Pei , et al. Synthesis of flame retardant based on phosphaphenanthrene and flame retardancy study of epoxy resin modified by intumescent flame retardant system composed of ammonium polyphosphate[J]. Acta Polymerica Sinica,2017(8):1358-1365(in Chinese). [15] WANG P, XIA L, JIAN R, et al. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: Preparation, thermal stability, and flame retardance[J]. Polymer Degradation and Stability,2018,149:69-77. [16] 郑梓聪, 马文石. 电子封装用有机硅/环氧树脂杂化材料的制备[J]. 高分子材料科学与工程, 2018, 34(3):111-115.ZHENG Zicong, MA Wenshi. Preparation of silicone/epoxy hybrids for electronic packaging[J]. Polymer Materials Science & Engineering,2018,34(3):111-115(in Chinese). [17] SUN Z, HOU Y, HU Y, et al. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin[J]. Materials Chemistry and Physics,2018,214:154-164. doi: 10.1016/j.matchemphys.2018.04.065 [18] XU M, LI X, LI B. Synthesis of a novel cross-linked organophosphorus-nitrogen containing polymer and its application in flame retardant epoxy resins[J]. Fire & Materials,2016,40(6):848-860. [19] ASTM International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—19[S]. West Conshohocken: ASTM International, 2019. [20] ASTM International. Standard test method for tensile properties of plastics: ASTM D638—08[S]. West Conshohocken: ASTM International, 2008. [21] 王志国, 梁兵, 刘徐越. 磷氮阻燃剂PDAB-DOPO的制备及阻燃环氧树脂复合材料性能研究[J]. 化工新型材料, 2018, 46(12):68-71.WANG Zhiguo, LIANG Bing, LIU Xuyue. Preparation of phosphorus-nitrogen PDAB-POPO and its flame retardant epoxy resin[J]. New Chemical Materials,2018,46(12):68-71(in Chinese). [22] 江民文, 尹晨辉, 李胜, 等. 环三磷腈-DOPO大分子阻燃剂的合成及阻燃环氧树脂性能[J]. 高等学校化学学报, 2019, 40(12):2615-2622. doi: 10.7503/cjcu20190257JIANG Minwen, YIN Chenhui, LI Sheng, et al. Synthesis of DOPO-based cyclotriphosphazene macromolecule flame retardant and its performance in flame-retarded epoxy resin[J]. Chemical Journal of Chinese Universities,2019,40(12):2615-2622(in Chinese). doi: 10.7503/cjcu20190257 [23] 黄邹松, 龙丽娟, 黄伟江, 等. 一种DOPO衍生物合成及其对PLA阻燃性能的影响[J]. 工程塑料应用, 2019, 47(5):127-130, 136. doi: 10.3969/j.issn.1001-3539.2019.05.024HUANG Zousong, LONG Lijuan, HUANG Weijiang, et al. Synthesis of a DOPO derivative and its effect on flame retardancy of polylactic acid[J]. Engineering Plastics Application,2019,47(5):127-130, 136(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.05.024 [24] LIU C, CHEN T, YUAN C H, et al. Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant[J]. Journal of Materials Chemistry A,2016,4(9):3462-3470. doi: 10.1039/C5TA07115A [25] GU L, CHEN G, YAO Y. Two novel phosphorus-nitrogen-containing halogen-free flame retardants of high performance for epoxy resin[J]. Polymer Degradation and Stability,2014,108:68-75. doi: 10.1016/j.polymdegradstab.2014.05.030 [26] LIANG W J, ZHAO B, ZHAO P H, et al. Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability,2017,135:140-151. doi: 10.1016/j.polymdegradstab.2016.11.023 [27] RAKOTOMALALA M, WAGNER S, DOERING M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications[J]. Materials,2010,3(8):4300-4327. doi: 10.3390/ma3084300 [28] 游歌云, 冯彬, 刘晓凤, 等. 含磷/氮/硫协效阻燃剂的合成及对环氧树脂的阻燃作用[J]. 化学研究与应用, 2019, 31(11):1898-1906.YOU Geyun, FENG Bin, LIU Xiaofeng, et al. Synthesis of a phosphorus/nitrogen/sulphur containing synergistic flame retardant and its flame retardancy on epoxy resin[J]. Chemical Research and Application,2019,31(11):1898-1906(in Chinese). [29] 潘莹, 朱东雨, 郭建维. 新型硫氮阻燃剂的合成及其环氧树脂应用[J]. 热固性树脂, 2019, 34(5):38-44.PAN Ying, ZHU Dongyu, GUO Jianwei. Synthesis of novel sulfur-nitrogen flame retardant and its application in epoxy resin[J]. Thermosetting Resin,2019,34(5):38-44(in Chinese). [30] ZHANG W, FINA A, CUTTICA F, et al. Blowing-out effect in flame retarding epoxy resins: Insight by temperature measurements during forced combustion[J]. Polymer Degradation and Stability,2016,131:82-90. [31] ISLAM M S, TAMAKAWA D, TANAKA S, et al. Polarized microscopic laser Raman scattering spectroscopy for edge structure of epitaxial graphene and localized vibrational mode[J]. Carbon,2014,77:1073-1081. doi: 10.1016/j.carbon.2014.06.023 [32] WANG Z, WU W, ZHONG Y, et al. Flame-retardant materials based on phosphorus-containing polyhedral oligomeric silsesquioxane and bismaleimide/diallylbisphenol a with improved thermal resistance and dielectric properties[J]. Journal of Applied Polymer Science,2015,132(9):41545. [33] JIANG S D, BAI Z M, TANG G, et al. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins[J]. ACS Applied Materials & Interfaces,2014,6(16):14076-14086. [34] SAHOO S, PALAI R, BARIK S K, et al. Raman spectroscopic studies of pulsed laser-induced defect evolution in graphene[J]. Journal of Raman Spectroscopy,2013,44(6):798-802. doi: 10.1002/jrs.4281 [35] 卢林刚, 王晓, 杨守生, 等. 单组分磷-氮膨胀阻燃剂的合成及成炭性能[J]. 高分子材料科学与工程, 2012, 28(7):10-13.LU Lingang, WANG Xiao, YANG Shousheng, et al. Synthesis and charring of arborescent monomolecular P-N intumescent flame retardant[J]. Polymer Materials Science and Engineering,2012,28(7):10-13(in Chinese). [36] SCHARTEL B, BRAUN U, BALABANOVICH A I, et al. Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener[J]. European Polymer Journal,2008,44(3):704-715. doi: 10.1016/j.eurpolymj.2008.01.017 [37] ZHANG W, LI X, YANG R. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)[J]. Polymer Degradation and Stability,2011,96(10):1821-1832. doi: 10.1016/j.polymdegradstab.2011.07.014