磷氮复合阻燃环氧树脂的制备及其阻燃性能

李亮, 蔡再生

李亮, 蔡再生. 磷氮复合阻燃环氧树脂的制备及其阻燃性能[J]. 复合材料学报, 2020, 37(11): 2707-2717. DOI: 10.13801/j.cnki.fhclxb.20200319.003
引用本文: 李亮, 蔡再生. 磷氮复合阻燃环氧树脂的制备及其阻燃性能[J]. 复合材料学报, 2020, 37(11): 2707-2717. DOI: 10.13801/j.cnki.fhclxb.20200319.003
LI Liang, CAI Zaisheng. Preparation and performance of flame-retardant epoxy resin composite containing phosphorus and nitrogen[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2707-2717. DOI: 10.13801/j.cnki.fhclxb.20200319.003
Citation: LI Liang, CAI Zaisheng. Preparation and performance of flame-retardant epoxy resin composite containing phosphorus and nitrogen[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2707-2717. DOI: 10.13801/j.cnki.fhclxb.20200319.003

磷氮复合阻燃环氧树脂的制备及其阻燃性能

基金项目: 江苏省高等学校自然科学研究计划面上项目(19KJD430009);盐城工业职业技术学院自然科学项目(ygy1702)
详细信息
    通讯作者:

    蔡再生,博士,教授,博士生导师,研究方向为功能高分子材料 E-mail:zshcai@dhu.edu.cn

  • 中图分类号: TB332

Preparation and performance of flame-retardant epoxy resin composite containing phosphorus and nitrogen

  • 摘要: 为改善环氧树脂的阻燃性,成功合成了一种含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP)。采用傅里叶变换衰减全反射红外光谱法(ATR-FTIR)、核磁共振(NMR)和元素分析等手段对FRASP的化学结构进行表征。将FRASP添加到双酚A型环氧树脂(DGEBA)中,经4,4’-二氨基二苯甲烷(DDM)固化后,制备出DGEBA-FRASP复合树脂。FRASP质量分数为9wt%的DGEBA-FRASP复合树脂的极限氧指数(LOI)达到35.9%,垂直燃烧(UL94)的等级为V-0级。残炭的形貌和激光拉曼光谱(LRS)分析显示,FRASP促进膨胀、致密、高石墨化程度的多孔炭层的生成。热重分析表明,FRASP改变了DGEBA-FRASP复合树脂的热降解过程,促进了DGEBA-FRASP复合树脂提前热分解,使最大失重率降低,并提高了残炭量。热裂解分析显示,DGEBA-FRASP复合树脂裂解过程中产生了含磷分子和不可燃气体,可稀释O2并抑制燃烧过程中自由基链式反应。FRASP分子中P、N和S的协同作用,改善了DGEBA-FRASP复合树脂的阻燃性能。
    Abstract: A flame retardant additive with sulfone and phosphaphenanthrene groups (FRASP) was successfully synthesized for improving the flame retardancy of diglycidyl ether of bisphenol A type epoxy resins (DGEBA). The chemical structure of FRASP was characterized by attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance (NMR) and elemental analysis. FRASP was added into DGEBA, and the flame-retardant DGEBA-FRASP composite resins were prepared via thermal curing reaction between 4,4’-diaminodiphenyl methane (DDM) and the mixed DGEBA. When the mass fraction of FRASP is 9wt%, the limiting oxygen index (LOI) reaches 35.9%, and V-0 rating under the vertical combustion (UL94) test is achieved. The morphology and Laser Raman spectroscopy (LRS) analysis of char residues after UL94 test indicate that the addition of FRASP favor the generation of an intumescent, tight and high-graphitization degree char layer with porous structure inside. The thermosgravimetric analysis results reveal that FRASP changes the thermal degradation process of DGEBA-FRASP composite resins and the maximum mass loss rate decreases, which results in a higher residual char. Pyrolysis-gas chromatography/mass spectrometry analysis shows that the phosphorus fragments and nonflammable gas release during DGEBA-FRASP composite resins thermal decomposition, which can dilute the O2 and act as free radical inhibitors in combustion. Owing to the synergistic effect of P, N and S in condensed and gas phase, the DGEBA-FRASP composite resins display improved flame-retardancy.
  • 环氧树脂因其优良的特性被广泛用于电子电气、涂层和建筑材料等领域[1-3],但其易燃性具有潜在的火灾隐患[4-8]。通过添加阻燃剂可提高环氧树脂的阻燃性能。自欧盟颁布限制使用部分含卤化合物(持久性有机污染物(POPs))的环境法案以来,含磷类阻燃剂因其良好的阻燃性及环保性近年来得到广泛关注[9-11]。9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)作为一种含磷中间体,分子中P—H键具有活泼的反应性,可与多种缺电子化合物(如亚胺)发生加成反应,制备出具有阻燃性的含DOPO基团的化合物[12-14]。通过合理的分子结构设计,还可引入多种其他元素,从而形成协同效应[6,15-18]

    本研究通过分子结构设计,以对二氨基二苯基砜(DDS)为含氮供体,DOPO为含磷供体,制备出含P、N和S的无卤的含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP),并用于双酚A型环氧树脂(DGEBA)-FRASP复合阻燃环氧树脂的制备。采用红外、核磁和元素分析等手段对FRASP分子结构进行表征,应用垂直燃烧(UL94)测试和极限氧指数(LOI)测试对DGEBA-FRASP复合树脂的阻燃性能进行评价,利用SEM和拉曼光谱分析研究了残炭形貌和石墨化程度,并对DGEBA-FRASP复合树脂的热稳定性和裂解行为进行分析。

    9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO),在乙醇中重结晶后使用,上海诺泰化工有限公司;4,4’-二氨基二苯砜(DDS,97%)、对苯二甲醛(98%),Aladdin;无水乙醇、4,4’-二氨基二苯甲烷(DDM,99%)、二甲基甲酰胺(DMF),均为AR,国药化学试剂;双酚A型环氧树脂(DGEBA),商品名:E-44,昆山绿循化工。

    FRASP的合成过程:(1) 对苯二甲醛与DDS通过缩合反应生成中间体亚胺(DP),在配有磁力搅拌和回流装置的四口烧瓶中加入DDS和乙醇,N2保护下搅拌加热至70℃,缓慢滴加对苯二甲醛的乙醇溶液,保温2 h后,加入2滴冰醋酸,升温至乙醇回流温度, 保温反应6 h。将混合物自然冷却至室温,过滤、洗涤后,真空烘干(60℃,24 h),得到橙红色固体DP,产率为90.5%;(2) DP与DOPO进行加成反应生成产物FRASP,取定量DP,DOPO加入到装有磁力搅拌和回流装置的三口烧瓶中,加入N,N-二甲基甲酰胺(DMF),搅拌下加热至回流温度,保温反应24 h后,冷却至室温,过滤洗涤后,真空烘干(80℃,24 h),得白色固体FRASP,产率为91.4%。FRASP的合成路线如图1所示。

    图  1  含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP)的合成路线
    Figure  1.  Synthetic routes of flame retardant additive with sulfone and phosphaphenanthrene groups (FRASP)
    DP—N-phenylsulfonyl dibenzimide; DMF—N,N-dimethylformamide

    定量的DDM与FRASP混合后,加入到带有搅拌器的三口圆底烧瓶中,油浴中加热至80℃,待混合物变均匀、透明后,保温15 min,加入定量的DGEBA,快速搅拌5 min,随后将混合物倒入到垂直燃烧(UL94)、极限氧指数(LOI)和拉伸性能测试所需样品尺寸(分别依据UL94垂直燃烧实验方法、ASTM D2863—19[19]和ASTM D638—08[20])的模具中,转移至烘箱,在120℃下保温固化2 h后,升温至160℃保温固化2 h。自然冷却至室温后,从模具中取出,得到不同FRASP质量分数的DGEBA-FRASP复合树脂,各成分组成及FRASP质量分数如表1所示。

    表  1  双酚A型环氧树脂(DGEBA)-FRASP复合树脂的配方及FRASP的质量分数
    Table  1.  Formulas of diglycidyl ether of bisphenol A(DGEBA)-FRASP composite reins and mass fraction of FRASP
    SampleComposition/gMFRASP/wt%
    DGEBADDMFRASP
    Neat DGEBA 100 22 0 0
    DGEBA-FRASP3 100 22 3.77 3
    DGEBA-FRASP6 100 22 7.79 6
    DGEBA-FRASP9 100 22 12.07 9
    Notes: DDM—4,4-diaminodiphenyl methane; MFRASP—Mass fraction of FRASP in DGEBA-FRASP composite resins.
    下载: 导出CSV 
    | 显示表格

    采用珀金埃尔默Spectrum Two (USA)对样品的傅里叶变换衰减全反射红外光谱进行测试;采用布鲁克Avance spectrometer (400 MHz)核磁共振仪对样品进行1H-Nuclear Magnetic Resonance(NMR)和31P-NMR测试,测试溶剂为氘代二甲基亚砜(DMSO-d6),四甲基硅烷(TMS)为标准参照物,将10.0 mg左右聚合物样品完全溶解于核磁样品管中;采用美国Leeman Prodigy 型电感耦合等离子体原子发射仪对样品进元素分析,对产物中C、H、N、P元素进行含量分析;采用德国NETZSCH公司的TG 209 F1 thermal analyzer对样品进行热重分析(TGA),N2和空气氛围下,升温速率为10℃/min,测试温度为室温至800℃;采用意大利ATS FAAR公司Oxygen Index Flammability Gauge对样品的LOI进行测试,样品尺寸为130 mm×6.5 mm×3 mm;样品的燃烧性能测试尺寸为130 mm×12.7 mm×3 mm;采用日本的Hitachi公司TM-1000型SEM观察UL94测试后残炭的微观形貌,电压为20 kV,放大倍数为300倍;残炭形貌(N2氛围中热降解):将固定尺寸(12.7 mm×12.7 mm×3.0 mm,从UL94测试样条上截取)的环氧树脂置于上海升利公司SLG40型气氛炉中,在N2氛围下以10℃/min的升温速度升温600℃,随后自然降温至室温,取出观察形貌并用数码相机记录。采用SPEX-1430型激光拉曼光谱仪(SPEX,USA)对残炭进行拉曼光谱分析,激光光源为633 nm氩激光器,扫描范围为500~2500 cm−1。根据ASTM D638—08[20],1BA型样条,总长为75 mm,标距为25 mm,厚度为2.1 mm,采用英国Housfield公司的H5K-S型万能材料测试仪进行拉伸性能测试。

    图2为对苯二甲醛、DDS、DP和 FRASP的FTIR图谱。可以发现,第一步合成产物DP在1699 cm−1处出现亚胺键—N=C—的吸收峰,说明DDS与对苯二甲醛发生亚胺化反应。在FRASP的FTIR图谱中,1594 cm1和1477 cm−1 处出现苯环上P—CAr键的伸缩振动峰,在1330 cm−1处出现—C—N—键的振动吸收峰,在1285 cm−1和1230 cm−1处出现P=O的伸缩振动峰,在924 m−1和751 m−1处出现P—O—CAr 的伸缩振动峰[21-22],且在2436 cm−1处未发现P—H键的伸缩振动峰[23],说明DOPO已与DP进行加成反应,形成了FRASP。

    图  2  对苯二甲醛、4,4’-二氨基二苯砜(DDS)、亚胺(DP)和FRASP的FTIR图谱
    Figure  2.  FTIR spectra of 1,4-Phthalaldehyde, 4,4’-diaminodiphenylsulfon (DDS), N-phenylsulfonyl dibenzimide (DP) and FRASP

    图3为FRASP的31P-NMR and 1H-NMR图谱。由图3(a)可以看到,化学位移为5.22×10–6~5.32×10–6处发现P—C—H基团中H的特征吸收峰,化学位移为5.68×10–6~5.82×10–6处观测到—NH—基团中的H吸收峰;化学位移为6.01×10–6处观测到CAr—NH2基团的H吸收峰,化学位移为6.56×10–6~8.21×10–6处观测到苯环上H吸收峰,与FRASP分子结构一致。

    图  3  FRASP的31P-NMR and 1H-NMR图谱
    Figure  3.  31P-NMR and 1H-NMR spectra of FRASP

    图3(b)可以看到,在化学位移为30.95×10–6和28.44×10–6处出现两个吸收峰,对应FRASP分子中重复单元的P原子。这是由于芳砜基的强吸电子作用和刚性DOPO基团产生的空间位阻效应导致FRASP分子中P原子在31P-NMR上的化学位移偏离,而产生这种双峰现象[24-26]

    FRASP元素分析测试结果为:C含量为67.51wt%,H含量为4.16wt%,N含量为3.84wt%,P含量为7.57wt%。根据 FRASP的分子结构,计算不同重复单元数n下C、H、N、P等元素的含量,当n为5时,FRASP理论分子量为4 474.34,理论分子式为C252H185N12O35P11S6,各元素理论含量计算值为:C含量为67.64wt%,H含量为4.18wt%,N含量为3.75wt%,P含量为7.61wt%,测试值与n为5时的理论值相近。

    因此,根据红外、核磁和元素分析结果可知,FRASP被成功合成,产物中主要以重复单元数n为5的FRASP分子。

    表2为DGEBA及DGEBA-FRASP树脂的UL94和LOI测试结果。可知,DGEBA树脂的LOI为24.8%,在第一次点火后,持续燃烧并燃尽。添加FRASP后,DGEBA-FRASP复合树脂的LOI随FRASP质量分数的增加而逐渐增大,由DGEBA-FRASP3复合树脂的33.7%增大至DGEBA-FRASP9复合树脂的35.9%,UL94测试中第一次点火后的自熄灭时间和第二次点火后的自熄灭时间(t1+t2)由DGEBA-FRASP3复合树脂的(6.1+6.3) s降低到DGEBA-FRASP9复合树脂的(2.3+1.9) s,并达到V-0级。

    表  2  DGEBA和DGEBA-FRASP树脂的垂直燃烧(UL94)和极限氧指数(LOI)测试结果
    Table  2.  Vertical combustion (UL94) and limiting oxygen index (LOI) test results of DGEBA and DGEBA-FRASP resins
    SampleLOI/%t1 +t2/sDrippingRating
    DGEBA 24.8 NR Yes No rating
    DGEBA-FRASP3 33.7 6.1+6.3 No V-1
    DGEBA-FRASP6 34.5 4.3+3.0 No V-0
    DGEBA-FRASP9 35.9 2.3+1.9 No V-0
    Notes: t1—Self-extinguishing time after the first ignition, take the average value of 2 sets of samples; t2—Self-extinguishing time after the second ignition, take the average value of 2 sets of samples; NR—No ranking.
    下载: 导出CSV 
    | 显示表格

    图4为DGEBA和DGEBA-FRASP树脂在UL94测试时的图片。可以发现,添加FRASP后,DGEBA-FRASP复合树脂的燃烧行为明显减缓。一般认为,含磷阻燃剂主要在凝聚相起到阻燃作用,而含氮和硫类阻燃剂主要在气相中发挥阻燃作用。FRASP分子结构中的DOPO基团及含硫和含氮基团在燃烧过程中能促进成炭,形成致密、多孔的炭层,在凝聚相发挥阻燃作用;同时通过生成的含磷分子(自由基)和含硫、氮不可燃气体在气相中发挥阻燃作用[27-29]。在UL94测试过程中,发现有气体从试样内部冲出,吹灭火焰,这可能是由于当足够量的不可燃气体在因燃烧产生的致密炭层下集聚后最终冲出炭层时,因O2稀释将炭层外正在燃烧的火焰吹灭,形成“吹熄”效应[30]。FRASP的复合提高了DGEBA-FRASP复合树脂的阻燃性能。

    图  4  DGEBA和DGEBA-FRASP树脂在UL94测试时的图片
    Figure  4.  Digital photographs of DGEBA and DGEBA-FRASP resins in UL94 test

    图5为UL94测试后DGEBA和DGEBA-FRASP树脂残炭形貌的图片及其圆形标注区域相应位置的SEM图像。从图5(a)可以观察到,UL94测试后,纯DGEBA树脂的残炭呈收缩形貌,而添加FRASP后的DGEBA-FRASP复合树脂的残炭基本保持长方体三维结构,且在试样上观测到山丘状的凸起物(图5(a)中方框标注),部分凸起物上有破裂的大气孔,也正是在这些位置发现了气体冲出并吹熄火焰的现象。由图5(b)可以发现,纯DGEBA树脂的结构松散,而DGEBA-FRASP复合树脂具有紧密而膨胀的丘壑状外观;由图5(c)可以看到,纯DGEBA树脂的残炭不连续且带有裂纹,而DGEBA-FRASP复合树脂具有光滑而多孔的结构,这种膨胀、多孔的残炭在燃烧过程中可起到保护层的作用,隔绝热源对试样的传热,从而在凝聚相起到提高阻燃性的作用。

    图  5  DGEBA和DGEBA-FRASP树脂残炭的照片和SEM图像
    Figure  5.  Digital photographs and SEM images of char residue of DGEBA and DGEBA-FRASP resins

    图6为N2氛围下DGEBA和DGEBA-FRASP树脂热降解前、残炭外部和残炭内部的图片。从图6(a)可以看到,添加FRASP后,改变了环氧树脂的光学性质,DGEBA-FRASP复合树脂颜色随着FRASP添加量的增加而加深,呈黄棕色,未见明显的聚集现象,FRASP在DGEBA-FRASP树脂中分布均匀,呈半透明外观。由图6(b)可以看到,纯DGEBA树脂为片状结构,而DGEBA-FRASP复合树脂呈膨胀的立体结构,体积远远大于热解前的体积。由图6(c)可以看到,切开残炭,发现残炭内部为空心结构,这是在热降解过程中,内部产生大量热降解气体充斥在炭层中,形成了内部空心的膨胀立体结构,与SEM图像中观测到残炭紧密而多孔的形貌一致,表明FRASP促进了环氧树脂在降解过程中产生紧密而多孔的炭层。

    图  6  N2氛围下DGEBA和DGEBA-FRASP树脂热降解前(a)、残炭外部(b)和残炭内部(c)的图片
    Figure  6.  Digital photographs of DGEBA and DGEBA-FRASP resins before degradation(a) and exterior(b) and interior(c) of char residue after degradation in N2

    图7为N2氛围下DGEBA和DGEBA-FRASP树脂热降解后残炭的拉曼散射图谱。可知,1352 cm−1附近的峰(D峰)对应C原子晶体的缺陷,表示分子无序排列,1574 cm−1附近的峰(G峰)对应C原子sp2杂化的面内伸缩振动,与石墨化性质有关[31]。D峰与G峰的强度比(ID/IG)可以用对应的峰面积比值计算,ID/IG越大表明残炭的无序化,ID/IG越小表明残炭的有序度高,石墨化程度越高[32-34]。通过对DGEBA 和DGEBA-FRASP树脂残炭的拉曼散射曲线的分峰拟合,计算得到DGEBA残炭的ID/IG为1.65,而DGEBA-FRASP9复合树脂残炭的ID/IG为1.31,说明DGEBA-FRASP复合树脂的残炭石墨化程度更高,排列更有序,在热降解过程中,更紧密的炭层能起到更好的保护和隔绝作用。

    图  7  DGEBA和DGEBA-FRASP树脂残碳的拉曼图谱
    Figure  7.  Raman spectra of char residue of DGEBA and DGEBA-FRASP resins

    图8为FRASP、DGEBA和DGEBA-FRASP树脂在空气下的TG和DTG曲线。图9为FRASP、DGEBA和DGEBA-FRASP树脂在N2下的TG和DTG曲线。表3为FRASP、DGEBA和DGEBA-FRASP树脂在空气下的TGA数据。表4为FRASP、DGEBA和DGEBA-FRASP树脂在N2下的TGA数据。

    表  3  FRASP、DGEBA和DGEBA-FRASP树脂在空气下的TGA数据
    Table  3.  TGA data of FRASP, DGEBA and DGEBA-FRASP resins in air atmosphere
    SampleT5%/℃Tmax/℃Vmax/(%·℃–1)CY700/%
    DGEBA 362.2 384.7 –1.45 1.90
    FRASP 292.1 361.4 –0.46 43.41
    DGEBA-FRASP3 343.8 374.6 –1.26 2.85
    DGEBA-FRASP6 339.1 368.3 –1.14 3.72
    DGEBA-FRASP9 332.4 363.2 –1.13 5.74
    Notes: T5%―Temperature at 5% mass loss; Tmax―Temperature at the maximum mass loss rate; Vmax―Maximum mass loss rate; CY700―Char yield at 700℃.
    下载: 导出CSV 
    | 显示表格
    表  4  FRASP、DGEBA和DGEBA-FRASP树脂在N2下的TGA数据
    Table  4.  TGA data of FRASP, DGEBA and DGEBA-FRASP resins in N2 atmosphere
    SampleT5%/℃Tmax/℃Vmax/(%·℃–1)CY700/%
    DGEBA367.9387.2–1.7616.58
    FRASP310.1365.3–0.8133.40
    DGEBA-FRASP3357.8382.1–1.2519.48
    DGEBA-FRASP6353.9379.6–1.1921.27
    DGEBA-FRASP9341.3377.1–1.1622.96
    下载: 导出CSV 
    | 显示表格
    图  8  FRASP、DGEBA和DGEBA-FRASP树脂在空气下的TG和DTG曲线
    Figure  8.  TG and DTG curves of FRASP, DGEBA and DGEBA-FRASP resins in air atmosphere
    图  9  FRASP、DGEBA和DGEBA-FRASP树脂在N2下的TG和DTG曲线
    Figure  9.  TG and DTG curves of FRASP, DGEBA and DGEBA-FRASP resins in N2 atmosphere

    图8表3可知,在空气中,DGEBA和DGEBA-FRASP树脂的TG曲线均出现两次快速降解过程,与DTG曲线中两个波谷一致。与纯DGEBA相比,添加FRASP后,DGEBA-FRASP复合树脂初始降解温度下降,失重率为5%时的温度T5%由DGEBA的362.2℃下降到DGEBA-FRASP9复合树脂的332.4℃,表明FRASP使环氧树脂的热降解提前,热稳定性下降,有利于在降解初始阶段快速成炭,降低热流的传递效率。这种热降解提前的现象是含磷裂解产物在材料表面脱水炭化形成的炭化层导致的。最大失重速率温度Tmax也随着FRASP添加量的增加由DGEBA的384.7℃降低到DGEBA-FRASP9复合树脂的363.2℃;最大失重速率Vmax由DGEBA的1.45%·℃−1减小到DGEBA-FRASP9复合树脂的1.13%·℃−1,失重速率下降,促进了残炭量的增加,700℃时的残炭率CY700由DGEBA的1.90%增大到DGEBA-FRASP9复合树脂的5.74%。FRASP作为含P、N和S的阻燃剂,改变了DGEBA-FRASP复合树脂的热降解过程,使其提前热分解形成残炭保护层,并在炭层中通过—P—O—P—等含磷基团的交联作用生成更致密、热稳定更好的聚芳香结构的网状化合物[35],同时分子中S可进一步增强复合树脂的成炭[28],提高炭层对火焰的隔绝作用和稳定性,改善DGEBA-FRASP复合树脂的阻燃性能。

    图9表4可知,与在空气中不同,在N2中环氧树脂的降解只出现一次快速降解过程,对应DTG曲线中的一个波谷。与在O2中一致的是,FRASP降低了DGEBA-FRASP复合树脂的T5%TmaxVmax,提高了700℃时的残炭率,700℃时的残炭率由DGEBA的16.58%增加到DGEBA-FRASP9复合树脂的22.96%。FRASP与DGEBA的复合使环氧树脂的热降解提前,在降解初始阶段迅速脱水成炭,形成炭化层,保护树脂基体进一步热降解,降低了热失重速率,残炭率增大,从而提高DGEBA-FRASP复合树脂的阻燃性能。

    图10为FRASP的热裂解图谱。图11为DGEBA和DGEBA-FRASP树脂的热裂解图谱。由图10可见,FRASP的裂解产物主要为苯胺、邻苯基苯酚、联苯和二苯并呋喃,峰面积占比分别为27.8%、4.82%、5.28%和45.61%,还有少量的SO2气体(峰面积占比为1.49%)。根据这些产物的结构和FRASP分子特征,推测FRASP的分解主要是在C—N键和C—P键的断裂。其中,二苯并呋喃是FRASP分子中DOPO基团的C—P键和P—O键断裂释放出含磷分子而形成的产物[27,36]。FRASP的裂解分析表明,在热裂解过程中,含磷自由基和SO2等不可燃气体的产生可在气相起到阻燃作用。

    图  10  FRASP的热裂解图谱
    Figure  10.  Pyrogram of FRASP
    图  11  DGEBA和DGEBA-FRASP9树脂的热裂解图谱
    Figure  11.  Pyrograms of DGEBA and DGEBA-FRASP9 resins

    图11可以发现,DGEBA与DGEBA-FRASP9复合树脂的裂解产物大致相同,但产物的相对面积发生明显变化。在DGEBA-FRASP9复合树脂的裂解产物中发现二苯并呋喃、联苯和邻苯基苯酚,这些裂解产物也出现在FRASP的裂解产物中。依据Schartel等和Zhang等[36-37]的建议,二苯并呋喃、联苯和邻苯基苯酚是FRASP分子中P—C键和P—O键受热断裂释放出含磷分子而形成的产物,在DGEBA的裂解产物中未发现,表明在DGEBA-FRASP9复合树脂的裂解过程中有含磷分子(主要是含磷自由基)产生。在燃烧过程中,这些含磷分子可以捕捉火焰中的H和HO自由基,抑制燃烧的自由基链式反应,阻止火焰的传播,从而使燃烧区的火焰密度下降,燃烧速度下降,直至燃烧终止;同时,DGEBA-FRASP9复合树脂在裂解过程中产生了少量的SO2和含氮气体,这些不可燃气体可以起到稀释O2的作用,与含磷分子一起在气相起到阻燃作用。产物中还发现了具有长碳链的烷烃(如图11中所示的产物A),在DGEBA中未发现,说明FRASP改变了DGEBA-FRASP复合树脂的裂解过程,促进了大分子裂解产物的形成,在一定程度上可降低DGEBA-FRASP复合树脂热降解速率,延缓火焰燃烧速度,提高DGEBA-FRASP复合树脂的阻燃性能。

    (1)成功合成了一种含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP),并对其化学结构进行表征。

    (2) FRASP用于双酚A型环氧树脂(DGEBA)的复合,提高了DGEBA-FRASP复合树脂的阻燃性能。当FRASP质量分数为9wt%时,DGEBA-FRASP复合树脂的极限氧指数(LOI)为35.9%,垂直燃烧(UL94)的等级为V-0级。

    (3) FRASP降低了DGEBA-FRASP复合树脂失重5%时的温度、最大失重速率温度和最大失重速率,当FRASP质量分数为9wt%时,DGEBA-FRASP复合树脂的残炭率在空气和N2气氛下分别为5.74%和22.96%;DGEBA-FRASP复合树脂在燃烧过程中形成了致密、膨胀、多孔的炭层,可在凝聚相发挥阻燃作用。

    (4) DGEBA-FRASP复合树脂在热裂解过程中能形成含磷分子和不可燃气体,可在气相中发挥阻燃作用。

  • 图  1   含苯砜基和磷杂菲杂环的阻燃添加剂(FRASP)的合成路线

    Figure  1.   Synthetic routes of flame retardant additive with sulfone and phosphaphenanthrene groups (FRASP)

    DP—N-phenylsulfonyl dibenzimide; DMF—N,N-dimethylformamide

    图  2   对苯二甲醛、4,4’-二氨基二苯砜(DDS)、亚胺(DP)和FRASP的FTIR图谱

    Figure  2.   FTIR spectra of 1,4-Phthalaldehyde, 4,4’-diaminodiphenylsulfon (DDS), N-phenylsulfonyl dibenzimide (DP) and FRASP

    图  3   FRASP的31P-NMR and 1H-NMR图谱

    Figure  3.   31P-NMR and 1H-NMR spectra of FRASP

    图  4   DGEBA和DGEBA-FRASP树脂在UL94测试时的图片

    Figure  4.   Digital photographs of DGEBA and DGEBA-FRASP resins in UL94 test

    图  5   DGEBA和DGEBA-FRASP树脂残炭的照片和SEM图像

    Figure  5.   Digital photographs and SEM images of char residue of DGEBA and DGEBA-FRASP resins

    图  6   N2氛围下DGEBA和DGEBA-FRASP树脂热降解前(a)、残炭外部(b)和残炭内部(c)的图片

    Figure  6.   Digital photographs of DGEBA and DGEBA-FRASP resins before degradation(a) and exterior(b) and interior(c) of char residue after degradation in N2

    图  7   DGEBA和DGEBA-FRASP树脂残碳的拉曼图谱

    Figure  7.   Raman spectra of char residue of DGEBA and DGEBA-FRASP resins

    图  8   FRASP、DGEBA和DGEBA-FRASP树脂在空气下的TG和DTG曲线

    Figure  8.   TG and DTG curves of FRASP, DGEBA and DGEBA-FRASP resins in air atmosphere

    图  9   FRASP、DGEBA和DGEBA-FRASP树脂在N2下的TG和DTG曲线

    Figure  9.   TG and DTG curves of FRASP, DGEBA and DGEBA-FRASP resins in N2 atmosphere

    图  10   FRASP的热裂解图谱

    Figure  10.   Pyrogram of FRASP

    图  11   DGEBA和DGEBA-FRASP9树脂的热裂解图谱

    Figure  11.   Pyrograms of DGEBA and DGEBA-FRASP9 resins

    表  1   双酚A型环氧树脂(DGEBA)-FRASP复合树脂的配方及FRASP的质量分数

    Table  1   Formulas of diglycidyl ether of bisphenol A(DGEBA)-FRASP composite reins and mass fraction of FRASP

    SampleComposition/gMFRASP/wt%
    DGEBADDMFRASP
    Neat DGEBA 100 22 0 0
    DGEBA-FRASP3 100 22 3.77 3
    DGEBA-FRASP6 100 22 7.79 6
    DGEBA-FRASP9 100 22 12.07 9
    Notes: DDM—4,4-diaminodiphenyl methane; MFRASP—Mass fraction of FRASP in DGEBA-FRASP composite resins.
    下载: 导出CSV

    表  2   DGEBA和DGEBA-FRASP树脂的垂直燃烧(UL94)和极限氧指数(LOI)测试结果

    Table  2   Vertical combustion (UL94) and limiting oxygen index (LOI) test results of DGEBA and DGEBA-FRASP resins

    SampleLOI/%t1 +t2/sDrippingRating
    DGEBA 24.8 NR Yes No rating
    DGEBA-FRASP3 33.7 6.1+6.3 No V-1
    DGEBA-FRASP6 34.5 4.3+3.0 No V-0
    DGEBA-FRASP9 35.9 2.3+1.9 No V-0
    Notes: t1—Self-extinguishing time after the first ignition, take the average value of 2 sets of samples; t2—Self-extinguishing time after the second ignition, take the average value of 2 sets of samples; NR—No ranking.
    下载: 导出CSV

    表  3   FRASP、DGEBA和DGEBA-FRASP树脂在空气下的TGA数据

    Table  3   TGA data of FRASP, DGEBA and DGEBA-FRASP resins in air atmosphere

    SampleT5%/℃Tmax/℃Vmax/(%·℃–1)CY700/%
    DGEBA 362.2 384.7 –1.45 1.90
    FRASP 292.1 361.4 –0.46 43.41
    DGEBA-FRASP3 343.8 374.6 –1.26 2.85
    DGEBA-FRASP6 339.1 368.3 –1.14 3.72
    DGEBA-FRASP9 332.4 363.2 –1.13 5.74
    Notes: T5%―Temperature at 5% mass loss; Tmax―Temperature at the maximum mass loss rate; Vmax―Maximum mass loss rate; CY700―Char yield at 700℃.
    下载: 导出CSV

    表  4   FRASP、DGEBA和DGEBA-FRASP树脂在N2下的TGA数据

    Table  4   TGA data of FRASP, DGEBA and DGEBA-FRASP resins in N2 atmosphere

    SampleT5%/℃Tmax/℃Vmax/(%·℃–1)CY700/%
    DGEBA367.9387.2–1.7616.58
    FRASP310.1365.3–0.8133.40
    DGEBA-FRASP3357.8382.1–1.2519.48
    DGEBA-FRASP6353.9379.6–1.1921.27
    DGEBA-FRASP9341.3377.1–1.1622.96
    下载: 导出CSV
  • [1] 潘志伟, 马东鹏, 廖雨田, 等. 天然纤维/环氧树脂-混凝土的力学性能及老化规律天然纤维/环氧树脂-混凝土的力学性能及老化规律[J]. 复合材料学报, 2019, 36(6):1510-1519.

    PAN Zhiwei, MA Dongpeng, LIAO Yutian, et al. Mechanical performance and aging behavior of matural fiber/epoxy polymer-concrete[J]. Acta Materiae Compositae Sinica,2019,36(6):1510-1519(in Chinese).

    [2]

    IDDRISSU I, ZHENG H, ROWLAND S M. DC electrical tree growth in epoxy resin and the influence of the size of inceptive AC trees[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(3):1965-1972.

    [3] 康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG Junming, SUN Liangliang, WANG Jihui, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electionic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).

    [4]

    GUAN Q, YUAN L, ZHANG Y, et al. Improving the mechanical, thermal, dielectric and flame retardancy properties of cyanate ester with the encapsulated epoxy resin-penetrated aligned carbon nanotube bundle[J]. Composites Part B: Engineering,2017,123:81-91. DOI: 10.1016/j.compositesb.2017.05.029

    [5] 来方, 付海, 赵欧, 等. 聚苯氧基磷酸联苯二酚酯/聚磷酸铵膨胀阻燃剂对环氧树脂阻燃性能影响研究[J]. 高分子学报, 2017(4):692-699.

    LAI Fang, FU Hai, ZHAO Ou, et al. Influence of poly(biphenyl phenoxy phosphate)/APP on flame retardancy of epoxy resin[J]. Acta Polymerica Sinica,2017(4):692-699(in Chinese).

    [6] 王春红, 王利剑, 任子龙, 等. SiO-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响[J]. 复合材料学报, 2019, 36(7):1633-1639.

    WANG Chunhong, WANG Lijian, REN Zilong, et al. Effect of SiO2-bamboo fiber synergistic modification on friction and wear properties of epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1633-1639(in Chinese).

    [7]

    XIN D, HAN Q. Study on thermomechanical properties of cross-linked epoxy resin[J]. Molecular Simulation,2015,41(13):1081-1085. DOI: 10.1080/08927022.2014.938334

    [8] 陈平, 刘胜平, 王德忠. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2011.

    CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2011(in Chinese).

    [9] 徐志胜, 贾宏煜, 颜龙, 等. 三氧化钼与有机蒙脱土复配体系在膨胀阻燃环氧树脂中的应用[J]. 安全与环境学报, 2019, 19(3):847-853.

    XU Z S, JIA H Y, YAN L, et al. Application of the compound system of molybdenum trioxide and organic montmorillonite in intumescent flame retardant epoxy resin[J]. Journal of Safety and Environment,2019,19(3):847-853(in Chinese).

    [10]

    PENG D, LIU Y, LIU Y, et al. Preparation of phosphorus-containing phenolic resin and its application in epoxy resin as a curing agent and flame retardant[J]. Polymers for Advanced Technologies,2018,29(4):1294-1302. DOI: 10.1002/pat.4241

    [11]

    XIA Y, TANG R, TAO S, et al. Epoxy resin/phosphorus-based microcapsules: Their synergistic effect on flame retardation properties of high-density polyethylene/graphene nanoplatelets composites[J]. Journal of Applied Polymer Science,2018,135(34):46662. DOI: 10.1002/app.46662

    [12]

    SHI Y, YU B, ZHENG Y, et al. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin[J]. Journal of Colloid and Interface Science,2018,521:160-171. DOI: 10.1016/j.jcis.2018.02.054

    [13]

    XIE M, ZHANG S, DING Y, et al. Synthesis of a heat-resistant DOPO derivative and its application as flame-retardant in engineering plastics[J]. Journal of Applied Polymer Science,2017,134(22):44892.

    [14] 陈仕梅, 来方, 李霈, 等. 磷杂菲类阻燃剂的合成及其与聚磷酸铵复合膨胀体系对环氧树脂的阻燃性能研究[J]. 高分子学报, 2017(8):1358-1365.

    CHEN Shimei, LAI Fang , LI Pei , et al. Synthesis of flame retardant based on phosphaphenanthrene and flame retardancy study of epoxy resin modified by intumescent flame retardant system composed of ammonium polyphosphate[J]. Acta Polymerica Sinica,2017(8):1358-1365(in Chinese).

    [15]

    WANG P, XIA L, JIAN R, et al. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: Preparation, thermal stability, and flame retardance[J]. Polymer Degradation and Stability,2018,149:69-77.

    [16] 郑梓聪, 马文石. 电子封装用有机硅/环氧树脂杂化材料的制备[J]. 高分子材料科学与工程, 2018, 34(3):111-115.

    ZHENG Zicong, MA Wenshi. Preparation of silicone/epoxy hybrids for electronic packaging[J]. Polymer Materials Science & Engineering,2018,34(3):111-115(in Chinese).

    [17]

    SUN Z, HOU Y, HU Y, et al. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin[J]. Materials Chemistry and Physics,2018,214:154-164. DOI: 10.1016/j.matchemphys.2018.04.065

    [18]

    XU M, LI X, LI B. Synthesis of a novel cross-linked organophosphorus-nitrogen containing polymer and its application in flame retardant epoxy resins[J]. Fire & Materials,2016,40(6):848-860.

    [19]

    ASTM International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—19[S]. West Conshohocken: ASTM International, 2019.

    [20]

    ASTM International. Standard test method for tensile properties of plastics: ASTM D638—08[S]. West Conshohocken: ASTM International, 2008.

    [21] 王志国, 梁兵, 刘徐越. 磷氮阻燃剂PDAB-DOPO的制备及阻燃环氧树脂复合材料性能研究[J]. 化工新型材料, 2018, 46(12):68-71.

    WANG Zhiguo, LIANG Bing, LIU Xuyue. Preparation of phosphorus-nitrogen PDAB-POPO and its flame retardant epoxy resin[J]. New Chemical Materials,2018,46(12):68-71(in Chinese).

    [22] 江民文, 尹晨辉, 李胜, 等. 环三磷腈-DOPO大分子阻燃剂的合成及阻燃环氧树脂性能[J]. 高等学校化学学报, 2019, 40(12):2615-2622. DOI: 10.7503/cjcu20190257

    JIANG Minwen, YIN Chenhui, LI Sheng, et al. Synthesis of DOPO-based cyclotriphosphazene macromolecule flame retardant and its performance in flame-retarded epoxy resin[J]. Chemical Journal of Chinese Universities,2019,40(12):2615-2622(in Chinese). DOI: 10.7503/cjcu20190257

    [23] 黄邹松, 龙丽娟, 黄伟江, 等. 一种DOPO衍生物合成及其对PLA阻燃性能的影响[J]. 工程塑料应用, 2019, 47(5):127-130, 136. DOI: 10.3969/j.issn.1001-3539.2019.05.024

    HUANG Zousong, LONG Lijuan, HUANG Weijiang, et al. Synthesis of a DOPO derivative and its effect on flame retardancy of polylactic acid[J]. Engineering Plastics Application,2019,47(5):127-130, 136(in Chinese). DOI: 10.3969/j.issn.1001-3539.2019.05.024

    [24]

    LIU C, CHEN T, YUAN C H, et al. Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant[J]. Journal of Materials Chemistry A,2016,4(9):3462-3470. DOI: 10.1039/C5TA07115A

    [25]

    GU L, CHEN G, YAO Y. Two novel phosphorus-nitrogen-containing halogen-free flame retardants of high performance for epoxy resin[J]. Polymer Degradation and Stability,2014,108:68-75. DOI: 10.1016/j.polymdegradstab.2014.05.030

    [26]

    LIANG W J, ZHAO B, ZHAO P H, et al. Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability,2017,135:140-151. DOI: 10.1016/j.polymdegradstab.2016.11.023

    [27]

    RAKOTOMALALA M, WAGNER S, DOERING M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications[J]. Materials,2010,3(8):4300-4327. DOI: 10.3390/ma3084300

    [28] 游歌云, 冯彬, 刘晓凤, 等. 含磷/氮/硫协效阻燃剂的合成及对环氧树脂的阻燃作用[J]. 化学研究与应用, 2019, 31(11):1898-1906.

    YOU Geyun, FENG Bin, LIU Xiaofeng, et al. Synthesis of a phosphorus/nitrogen/sulphur containing synergistic flame retardant and its flame retardancy on epoxy resin[J]. Chemical Research and Application,2019,31(11):1898-1906(in Chinese).

    [29] 潘莹, 朱东雨, 郭建维. 新型硫氮阻燃剂的合成及其环氧树脂应用[J]. 热固性树脂, 2019, 34(5):38-44.

    PAN Ying, ZHU Dongyu, GUO Jianwei. Synthesis of novel sulfur-nitrogen flame retardant and its application in epoxy resin[J]. Thermosetting Resin,2019,34(5):38-44(in Chinese).

    [30]

    ZHANG W, FINA A, CUTTICA F, et al. Blowing-out effect in flame retarding epoxy resins: Insight by temperature measurements during forced combustion[J]. Polymer Degradation and Stability,2016,131:82-90.

    [31]

    ISLAM M S, TAMAKAWA D, TANAKA S, et al. Polarized microscopic laser Raman scattering spectroscopy for edge structure of epitaxial graphene and localized vibrational mode[J]. Carbon,2014,77:1073-1081. DOI: 10.1016/j.carbon.2014.06.023

    [32]

    WANG Z, WU W, ZHONG Y, et al. Flame-retardant materials based on phosphorus-containing polyhedral oligomeric silsesquioxane and bismaleimide/diallylbisphenol a with improved thermal resistance and dielectric properties[J]. Journal of Applied Polymer Science,2015,132(9):41545.

    [33]

    JIANG S D, BAI Z M, TANG G, et al. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins[J]. ACS Applied Materials & Interfaces,2014,6(16):14076-14086.

    [34]

    SAHOO S, PALAI R, BARIK S K, et al. Raman spectroscopic studies of pulsed laser-induced defect evolution in graphene[J]. Journal of Raman Spectroscopy,2013,44(6):798-802. DOI: 10.1002/jrs.4281

    [35] 卢林刚, 王晓, 杨守生, 等. 单组分磷-氮膨胀阻燃剂的合成及成炭性能[J]. 高分子材料科学与工程, 2012, 28(7):10-13.

    LU Lingang, WANG Xiao, YANG Shousheng, et al. Synthesis and charring of arborescent monomolecular P-N intumescent flame retardant[J]. Polymer Materials Science and Engineering,2012,28(7):10-13(in Chinese).

    [36]

    SCHARTEL B, BRAUN U, BALABANOVICH A I, et al. Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener[J]. European Polymer Journal,2008,44(3):704-715. DOI: 10.1016/j.eurpolymj.2008.01.017

    [37]

    ZHANG W, LI X, YANG R. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)[J]. Polymer Degradation and Stability,2011,96(10):1821-1832. DOI: 10.1016/j.polymdegradstab.2011.07.014

  • 期刊类型引用(5)

    1. 崔增林,张东宏,寇彦飞,尤海珍,李腾宇,李轩. 多聚磷酸铵改性环氧有机硅树脂的抗烧蚀性能. 塑料科技. 2024(04): 60-64 . 百度学术
    2. 许肖丽,孙刚伟,钟佳琪,凌钦才,包春连,朱琦,殷榕壑,许保云,李晓雷,艾波. 反应型DOPO衍生物阻燃环氧树脂的研究进展. 上海塑料. 2023(03): 1-14 . 百度学术
    3. 王承慧,张英强,杨晨熙,石鑫,李林青,徐微. 含DOPO阻燃环氧树脂的研究进展. 应用技术学报. 2022(04): 321-325+352 . 百度学术
    4. 张开瑞. 新型化学防火材料在消防工程中的应用. 化学工程与装备. 2021(01): 257-258 . 百度学术
    5. 韩子华. 磷氮金属阻燃剂的制备及其应用分析. 中国金属通报. 2021(07): 129-130 . 百度学术

    其他类型引用(4)

图(11)  /  表(4)
计量
  • 文章访问数:  3458
  • HTML全文浏览量:  626
  • PDF下载量:  79
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-12-30
  • 录用日期:  2020-03-09
  • 网络出版日期:  2020-03-19
  • 刊出日期:  2020-11-14

目录

/

返回文章
返回