Digital image correlation aided method for identification of nonlinear constitutive parameters of IM7/8552 carbon fiber/epoxy composite unidirectional laminate along thickness directionction
-
摘要: 提出了采用数字图像相关(DIC)方法和有限元模型修正(FEMU)技术相结合,通过短梁剪切(SBS)试验获得碳纤维增强环氧树脂(IM7/8552)正交各向异性复合材料单向带层合板沿厚度方向压缩本构关系参数的试验方法。该方法根据假设材料初始本构,采用3D有限元模型(FEM)计算获得主平面压头下方沿厚度方向的应力和应变分布,以DIC实测应变和有限元计算应变之间的方差建立目标函数,并在FEM中进行迭代更新,收敛后获得材料本构参数。由于选择的试样加载形式近似静定结构,试样表面的应力分布对材料本构关系及参数弱相关,上述迭代过程进一步转化为通过全场有限元计算应力和DIC实测应变之间的最小二乘回归识别假设本构关系及参数。因此,该方法具有以下优点:迭代过程中不需要建立针对识别参数的显式敏感度矩阵,识别效率高;识别过程对初始材料本构参数不敏感。
-
关键词:
- 正交各向异性 /
- 压缩本构参数 /
- 数字图像相关(DIC) /
- 有限元模型修正(FEMU) /
- 复合材料
Abstract: A digital image correlation (DIC) aided method combined with finite element model updating (FEMU) technique was proposed to identify the compressive constitutive parameters along the thickness direction for carbon fiber/epoxy (IM7/8552) orthotropic composite unidirectional laminate through short beam shear (SBS) test. The stress and strain distributions on the loading plane along the thickness direction under the loading nose were calculated by 3D finite element model (FEM) with the initial trial parameters. A cost function of the square difference between DIC-measured and FEM-calculated strains was given accordingly and unknown constitutive parameters were determined iteratively through minimization of it. The stress distribution is weakly sensitive to the constitutive parameters since the SBS test configuration is nearly statically determinate. Thus minimization of the cost function can be achieved by the least squared linear regression between FEM-calculated stress and DIC-measured strain. The advantages of the proposed method include that an explicit sensitivity matrix is not required in the iterative procedure, the efficiency of the parameter identification is high, and it is not sensitive to the initial trial parameters. -
表 1 IM7/8552复合材料单向带层合板厚度方向本构参数识别结果
Table 1. Convergence results of compressive constitutive parameters along thickness direction of IM7/8552 composite unidirectional belt laminate
E33C/MPa−1 K33C/MPa−1 n33C 1 8 603.86 786.50 3.59 2 8 879.12 861.30 3.54 3 8 688.18 794.21 3.63 4 8 592.68 785.48 3.59 5 8 418.64 717.23 3.66 AVG 8 636.49 788.94 3.60 COV/% 1.94 6.48 1.26 Notes: E33C—Compressive elastic modulus in thickness direction; K33C—Secant modulus in thickness direction; n33C—Index number; COV—Coefficient of variation. -
[1] CHEN H X, CAO H J, HUANG X M. Simulation analysis of in-plane compression on three-dimensional spacer fabric composite[J]. Materials Science Forum,2019,971:36-44. doi: 10.4028/www.scientific.net/MSF.971.36 [2] KAMAE T, DRZAL L T. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase Part Ⅰ: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion[J]. Composites Part A: Applied Science and Manufacturing,2012,43(9):1569-1577. doi: 10.1016/j.compositesa.2012.02.016 [3] RIZVI Z H, SEMBDNER K, SUMAN A, et al. Experimental and numerical investigation of thermo-mechanical properties for nano-geocomposite[J]. International Journal of Thermophysics,2019,40(5):54. [4] ZHOU Y, HOSUR M, JEELANI S, et al. Fabrication and characterization of carbon fiber reinforced clay/epoxy composite[J]. Journal of Materials Science,2012,47(12):5002-5012. doi: 10.1007/s10853-012-6376-4 [5] 彭湃, 赵美英, 王文智. 细观力学模型预测复合材料横向强度性能研究[J]. 机械科学与技术, 2017, 36(10):1611-1618.PENG Pai, ZHAO Meiying, WANG Wenzhi. Transverse strength prediction of composite materials via micromechanics model[J]. Mechanical Science and Technology for Aerospace Engineering,2017,36(10):1611-1618(in Chinese). [6] QUICK T, SAFRIET S, MOLLENHAUER D, et al. Compression testing of micro-scale unidirectional polymer matrix composites[M]//BEESE A, ZEHNDER A, XIA S. Fracture, fatigue, failure and damage evolution, Volume 8. Springer Cham, 2016: 225-233. [7] HUSSIEN A, MOEHRING M, SCHWALL C, et al. On compressive response of IM7/8552 lamina: A theoretical & experimental review[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Hawaii: American Institute of Aeronautics and Astronantics, Inc., 2012. [8] KOERBER H, XAVIER J, CAMANHO P P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation[J]. Mechanics of Materials,2010,42(11):1004-1019. doi: 10.1016/j.mechmat.2010.09.003 [9] KAWAI M, WATANABE K, HOSHI H, et al. Effect of specimen size on longitudinal strength of unidirectional carbon/epoxy composite laminates (part 1, unnotched strength)[J]. Advanced Composite Materials,2019,28(s2):53-71. [10] TAM J H, ONG Z C, ISMAIL Z, et al. Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review[J]. Mechanics of Advanced Materials & Structures,2017,24(12):971-986. [11] KOERBER H, KUHN P, PLOECKL M, et al. Experimental characterization and constitutive modeling of the non-linear stress-strain behavior of unidirectional carbon-epoxy under high strain rate loading[J]. Advanced Modeling and Simulation in Engineering Sciences,2018,5:17. [12] 王显, 马少鹏, 陈俊达, 等. 数字散斑相关方法的全场优化表述[J]. 北京理工大学学报, 2011, 31(5):505-508, 566.WANG Xian, MA Shaopeng, CHEN Junda, et al. Global optimization model for digital speckle correlation method[J]. Transactions of Beijing Institute of Technology,2011,31(5):505-508, 566(in Chinese). [13] GONZALEZ J F, ANTARTIS D A, MARTINEZ M, et al. Three-dimensional study of graphite-composite electrode chemo-mechanical response using digital volume correlation[J]. Experimental Mechanics,2018,58(9):573-583. [14] BARBARELLA E, ALLIX O, DAGHIA F, et al. Comparison of mechanical tests for the identification of composite defects using full-field measurements and the modified constitutive relation error[M]//SORIĆ J, WRIGGERS P, ALLIX O. Multiscale modeling of heterogeneous structures. Springer, Cham, 2018: 39-59. [15] AVRIL S, PIERRON F, PANNIER Y, et al. Stress reconstruction and constitutive parameter identification in plane-stress elasto-plastic problems using surface measurements of deformation fields[J]. Experimental Mechanics,2008,48(4):403-419. doi: 10.1007/s11340-007-9084-2 [16] GREDIAC M, TOUSSAINT E, PIERRON F. Special virtual fields for the direct determination of material parameters with the virtual fields method 2: Application to in-plane properties[J]. International Journal of Solids & Structures,2002,39(10):2707-2730. [17] GREDIAC M, PIERRON F, AVRIL S, et al. The virtual fields method for extracting constitutive parameters from full-field measurements: A review[J]. Strain,2010,42(4):233-253. [18] CARPENTIER A P. Advanced materials characterization based on full field deformation measurements[D]. Texas: University of Texas at Arlington, 2013. [19] 贾利勇, 贾欲明, 于龙, 等. 基于多尺度模型的复合材料厚板G13剪切失效分析[J]. 复合材料学报, 2017, 34(4):786-794.JIA Liyong, JIA Yuming, YU Long, et. al. Failure analysis of thick composite laminates with multi-scale modelling under G13 out-of-plane shear loading[J]. Acta Materiae Compositae Sinica,2017,34(4):786-794(in Chinese). [20] JI X, HAO Z, SU L, et al. Characterizing the constitutive response of plain-woven fibre reinforced aerogel matrix composites using digital image correlation[J]. Composite Structures,2020,234:111652. [21] VIALA R, PLACET V, COGAN S. Identification of the anisotropic elastic and damping properties of complex shape composite parts using an inverse method based on finite element model updating and 3D velocity fields measurements (FEMU-3DVF): Application to bio-based composite violin soundboards[J]. Composites Part A: Applied Science and Manufacturing,2018,106:91-103. [22] 薛康, 肖毅, 王杰, 等. 单向纤维增强聚合物复合材料压缩渐进破坏[J]. 复合材料学报, 2019, 36(6):1398-1412.XUE Kang, XIAO Yi, WANG Jie, et. al. Compression progressive failure of unidirectional fiber reinforced polymer composite[J]. Acta Materiae Compositae Sinica,2019,36(6):1398-1412(in Chinese). [23] MAKEEV A, HE Y, CARPENTIER P, et al. A method for measurement of multiple constitutive properties for composite materials[J]. Composites Part A: Applied Science and Manufacturing,2012,43(12):2199-2210. doi: 10.1016/j.compositesa.2012.07.021 [24] MAKEEV A, CARPENTIER P, SHONKWILER B. Methods to measure interlaminar tensile modulus of composites[J]. Composites Part A: Applied Science and Manufacturing,2014,56:256-261. [25] HE T, LIU L, MAKEEV A, et al. Characterization of stress-strain behavior of composites using digital image correlation and finite element analysis[J]. Composite Structures,2016,140:84-93. doi: 10.1016/j.compstruct.2015.12.018 [26] HE T, LIU L, MAKEEV A. Uncertainty analysis in composite material properties characterization using digital image correlation and finite element model updating[J]. Composite Structures,2017,184:337-351. [27] JULIA C. Accurate three-dimensional characterization of the nonlinear material constitutive properties for laminated composite materials[D]. Texas: University of Texas at Arlington, 2015. [28] ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344M—16[S]. West Conshohocken: ASTM International, 2016. [29] HE Y, MAKEEV A. Nonlinear shear behavior and interlaminar shear strength of unidirectional polymer matrix composites: A numerical study[J]. International Journal of Solids and Structures,2014,51(6):1263-1273. doi: 10.1016/j.ijsolstr.2013.12.014