留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压电传感器的树脂基复合材料固化过程监测

张佳奇 陈铎 郑跃滨 周凯 杨正岩 武湛君

张佳奇, 陈铎, 郑跃滨, 等. 基于压电传感器的树脂基复合材料固化过程监测[J]. 复合材料学报, 2020, 37(11): 2776-2781. doi: 10.13801/j.cnki.fhclxb.20200311.003
引用本文: 张佳奇, 陈铎, 郑跃滨, 等. 基于压电传感器的树脂基复合材料固化过程监测[J]. 复合材料学报, 2020, 37(11): 2776-2781. doi: 10.13801/j.cnki.fhclxb.20200311.003
ZHANG Jiaqi, CHEN Duo, ZHENG Yuebin, et al. Piezoelectric transducers based curing monitoring of resin matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2776-2781. doi: 10.13801/j.cnki.fhclxb.20200311.003
Citation: ZHANG Jiaqi, CHEN Duo, ZHENG Yuebin, et al. Piezoelectric transducers based curing monitoring of resin matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2776-2781. doi: 10.13801/j.cnki.fhclxb.20200311.003

基于压电传感器的树脂基复合材料固化过程监测

doi: 10.13801/j.cnki.fhclxb.20200311.003
基金项目: 国家重点研发计划(2018YFA0702800)
详细信息
    通讯作者:

    武湛君,博士,教授,研究方向为耐极端环境复合材料和结构健康监测 E-mail:wuzhj@dlut.edu.cn

  • 中图分类号: TB332

Piezoelectric transducers based curing monitoring of resin matrix composites

  • 摘要: 复合材料固化成型工艺是影响树脂基复合材料结构性能的关键之一,因此需要针对其固化过程进行有效在线监测。本文基于压电传感器提出一种超声导波技术和机电阻抗技术相结合的树脂基复合材料固化过程监测方法,研究了超声导波能量与固化时间的关系及机电阻抗共振峰随固化时间的变化规律。研究表明,固化过程中树脂基复合材料结构的超声导波信号幅值和机电阻抗信号共振峰频率均出现先减小后增大并逐渐平稳的趋势,可以体现树脂基复合材料固化过程中的一系列变化。以监测单向碳纤维(T300)/热固性环氧树脂预浸料固化为例,验证压电传感器对复合材料固化的监测方法。T300/热固性环氧树脂复合材料在真空袋压、固化温度为120℃条件下,20 min为凝胶时间点,65 min为固化完成时间点。本研究基于压电固化过程在线监测方法为树脂基复合材料成型工艺的设计和优化提供了基础数据和技术支撑。

     

  • 图  1  超声导波监测原理示意图

    Figure  1.  Principle diagram of guided wave monitoring

    PZT—Piezoelectric transducer

    图  2  固化监测实验用碳纤维(T300)/热固性环氧树脂复合材料示意图

    Figure  2.  Schematic diagram of carbon fiber (T300)/thermosetting epoxy composite for curing monitoring experiment

    图  3  固化监测实验设置

    Figure  3.  Setting of curing monitoring experiment

    图  4  T300/热固性环氧树脂复合材料不同固化时间的导波信号

    Figure  4.  Guided wave signals of T300/thermosetting epoxy composite in varying curing time

    图  5  T300/热固性环氧树脂复合材料对称模态(S0)导波信号随固化时间幅值变化曲线

    Figure  5.  Amplitude curves of symmetric mode (S0) guided wave signals of T300/thermosetting epoxy composite varying with curing time

    图  6  不同固化时间的T300/热固性环氧树脂复合材料与PZT耦合的机电阻抗

    Figure  6.  Electro-mechanical impedance of T300/thermosetting epoxy composite with different curing time coupled with PZT

    图  7  T300/热固性环氧树脂复合材料与PZT耦合的机电阻抗共振峰频率随固化时间变化曲线

    Figure  7.  Formant frequency of electro-mechanical impedance curve of T300/thermosetting epoxy composite coupled with PZT varying with curing time

  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composites and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 武湛君, 渠晓溪, 高东岳, 等. 航空航天复合材料结构健康监测技术研究进展[J]. 航空制造技术, 2016(15):92-102, 109.

    WU Zhanjun, QU Xiaoxi, GAO Dongyue, et al. Research progress on structural health monitoring technology for aerospace composite structures[J]. Aeronautical Manufacturing Technology,2016(15):92-102, 109(in Chinese).
    [3] 王奕首, 李煜坤, 吴迪, 等. 复合材料液体成型固化监测技术研究进展[J]. 航空制造技术, 2017(19):48-59.

    WANG Yishou, LI Yukun, WU Di, et al. Progress on cure monitoring for liquid composite molding[J]. Aeronautical Manufacturing Technology,2017(19):48-59(in Chinese).
    [4] 王殿富, 万里冰, 张博明, 等. 光纤传感器在复合材料固化监测中的应用[J]. 哈尔滨工业大学学报, 2002, 34(5):710-714. doi: 10.3321/j.issn:0367-6234.2002.05.032

    WANG Dianfu, WAN Libing, ZHANG Boming, et al. Application of fiber optic sensors to monitoring of composite cures[J]. Journal of Harbin Institute of Technology,2002,34(5):710-714(in Chinese). doi: 10.3321/j.issn:0367-6234.2002.05.032
    [5] PINEDA U, MONTÉS N, SÁNCHEZ F, et al. Towards a quality monitoring to control the degree of cure in the manufacturing of composite parts[J]. Advanced Science Letters,2013,19(3):869-872.
    [6] 赵瑾朝, 周兴平, 黄乐平. 树脂基复合材料固化过程的超声波在线监测研究进展[J]. 高分子材料科学与工程, 2018, 34(7):183-190.

    ZHAO Jinchao, ZHOU Xingping, HUANG Leping. Progress in cure monitoring of resin matrix composites via ultrasonics[J]. Polymer Materials Science & Engineering,2018,34(7):183-190(in Chinese).
    [7] LUO S, LIU T. Graphite nanoplatelet enabled embeddable fiber sensor for in situ curing monitoring and structural health monitoring of polymeric composites[J]. ACS Applied Materials & Interfaces,2014,6(12):9314-9320. doi: 10.1021/am5017039
    [8] 卢少微, 陈铎, 王晓强. 聚合物基复合材料制造过程在线监测技术研究进展[J]. 航空制造技术, 2017(19):72-77.

    LU Shaowei, CHEN Duo, WANG Xiaoqiang. Review of in-situ cure monitoring techniques for polymer matrix composite manufacturing process[J]. Aeronautical Manufacturing Technology,2017(19):72-77(in Chinese).
    [9] QING X P, BEARD S J, KUMAR A, et al. A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure[J]. Smart Materials & Structures,2006,15(3):66-73.
    [10] 陶博然, 郭婵, 李建新, 等. 超声波实时监测乙烯基酯树脂固化反应过程[J]. 复合材料学报, 2009, 26(3):73-77. doi: 10.3321/j.issn:1000-3851.2009.03.014

    TAO Boran, GUO Chan, LI Jianxin, et al. In-situ measurement of the curing behavior of vinyl-ester resin by ultrasonic wave propagation[J]. Acta Materiae Compositae Sinica,2009,26(3):73-77(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.03.014
    [11] 胡焱, 黄贵飞, 梁科, 等. 超声波在线监测环氧树脂中温固化过程实验研究[J]. 玻璃钢/复合材料, 2017(5):11-15. doi: 10.3969/j.issn.1003-0999.2017.05.002

    HU Yan, HUANG Guifei, LIANG Ke, et al. Experimental study of online monitoring curing process of epoxy resin under medium temperature condition by ultrasonic technique[J]. Fiber Reinforced Plastics/Composites,2017(5):11-15(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.05.002
    [12] DANISMAN M, TUNCOL G, KAYNAR A, et al. Monitoring of resin flow in the resin transfer molding (RTM) process using point-voltage sensors[J]. Composites Science & Technology,2007,67(3-4):367-379.
    [13] LIM Y Y, TANG Z S, SMITH S T. Piezoelectric-based monitoring of the curing of structural adhesives: A novel experimental study[J]. Smart Materials & Structures,2019,28(1):015016.
    [14] 杨正岩, 张佳奇, 高东岳, 等. 航空航天智能材料与智能结构研究进展[J]. 航空制造技术, 2017(17): 36-48.

    YANG Zhengyan, ZHANG Jiaqi, GAO Dongyue, et al. Advance of aerospace smart material and structure[J]. 2017(17): 36-48(in Chinese).
    [15] GIURGIUTIU V, ZAGRAI A, BAO J J. Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring[J]. Structural Health Monitoring,2002,1(1):41-61. doi: 10.1177/147592170200100104
    [16] ZHOU K, ZHENG Y, ZHANG J, et al. A reconstruction-based mode separation method of Lamb wave for damage detection in plate structures[J]. Smart Materials & Structures,2019,28(3):035033.
    [17] 刘科海. 飞行器关键构件的超声导波损伤诊断成像方法研究[D]. 大连: 大连理工大学, 2016.

    LIU Kehai. Damage diagnostic imaging using ultrasonic guided waves for key components in aerospace structures[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
    [18] GAO D, WU Z, YANG L, et al. Guide waves-based multi-damage identification using a local probability-based diagnostic imaging method[J]. Smart Materials & Structures,2016,25(4):045009.
    [19] SU Z, YE L, LU Y. Guided Lamb waves for identification of damage in composite structures: A review[J]. Journal of Sound & Vibration,2006,295(3-5):753-780.
    [20] WU Z, LIU K, WANG Y, et al. Validation and evaluation of damage identification using probability-based diagnostic imaging on a stiffened composite panel[J]. Journal of Intelligent Material Systems & Structures,2015,26(16):2181-2195.
    [21] ZHOU K, XU X, ZHAO Z, et al. Excitation of plane Lamb wave in plate-like structures under applied surface loading[J]. Smart Materials & Structures,2018,27(2):025011.
    [22] 朱宏平, 王丹生, 张俊兵. 基于压电阻抗技术的结构损伤识别基本理论及其应用[J]. 工程力学, 2008, 25(s2):34-43.

    ZHU Hongping, WANG Dansheng, ZHANG Junbing. Theory and application of structure damage detection based on piezoelectric impedance technique[J]. Engineering Mechanics,2008,25(s2):34-43(in Chinese).
    [23] LIANG C, SUN F P, ROGERS C A. Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer[J]. Journal of Intelligent Material Systems & Structures,1997,5(4):335-343.
    [24] ZHENG Y, LIU K, WU Z, et al. Lamb waves and electro-mechanical impedance based damage detection using a mobile PZT transducer set[J]. Ultrasonics,2019,92:13-20. doi: 10.1016/j.ultras.2018.06.008
    [25] 沈星, 吕娟, 章建文, 等. 基于压电阻抗技术和BP网络的结构健康监测[J]. 南京航空航天大学学报, 2010, 42(4):418-422. doi: 10.3969/j.issn.1005-2615.2010.04.005

    SHEN Xing, LV Juan, ZHANG Jianwen, et al. Experiment of structural health monitoring based on piezoelectric impedance technology and BP network[J]. Journal of Nanjing University of Aeronautics & Astronautics,2010,42(4):418-422(in Chinese). doi: 10.3969/j.issn.1005-2615.2010.04.005
    [26] LIONETTO F, RIZZO R, LUPRANO V A M, et al. Phase transformations during the cure of unsaturated polyester resins[J]. Materials Science & Engineering A,2004,370(1-2):284-287.
  • 加载中
图(7)
计量
  • 文章访问数:  1541
  • HTML全文浏览量:  589
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 录用日期:  2020-01-20
  • 网络出版日期:  2020-03-12
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回