Influence of metakaolin on passivation of reinforcing steel in cement mortar
-
摘要: 利用电化学阻抗谱、循环动电位极化、阴极极化、热重和XRD等方法,研究了偏高岭土(MK)掺量(占MK/水泥总质量的20wt%、30wt%、40wt%)对钢筋-MK/水泥砂浆中钢筋钝化膜形成及其耐蚀性能的影响。结果表明:在一般环境中,钢筋在不同MK掺量的钢筋-MK/水泥砂浆中均可以形成稳定的钝化膜;在质量分数为3.5wt%的NaCl溶液环境中,MK掺量过多会使钢筋-MK/水泥砂浆中钢筋的钝化膜稳定性降低,耐蚀性能下降。从钢筋钝化膜稳定角度考虑,在氯盐环境中,水泥基材料中MK掺量应予以限制。Abstract: The effect of metakaolin (MK) amount (accounting for 20wt%, 30wt% and 40wt% of the total mass of MK/cement mortar) on the passivation film formation and corrosion resistance of passivation film of reinforcing steel in MK/cement mortar was studied by eletrochemical impedance spectroscopy, cyclic potentiodynamic polarization, cathodic polarization, thermogravimetric analysis and diffraction of XRD. The results indicate that the reinforcing steel can form stable passivation film in steel-MK/cement mortar with different MK contents in general environment. In the solution environment of 3.5wt% mass fraction of NaCl, excessive amount of MK reduces the stability of passive film and the corrosion resistance of reinforcing steel in steel-MK/cement mortar. Considering the stability of passive film, the content of MK in cement-based materials should be limited in chloride environment.
-
表 1 水泥化学组成
Table 1. Chemical composition of cement
wt% SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2Oeq f-CaO Cl– Ignition loss 21.88 4.31 3.47 62.39 1.72 2.56 0.23 1.52 0.016 1.42 Notes: Na2Oeq—Content of volatile alkaline; f-CaO—Free CaO[10]. 表 2 水泥物理力学性能
Table 2. Physical and mechanical properties of cement
Density/
(g.cm–2)Standard
consistency/%Compressive strength
of 3 d/MPaFlexural strength
of 3 d/MPaSetting time/min Initial setting Final setting 3.15 25 26.6 5.3 186 248 表 3 偏高岭土(MK)化学组成
Table 3. Chemical composition of metakaolin(MK)
wt% SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O N2O Ignition loss 49.40 43.88 0.51 0.27 2.66 0.14 0.23 1.52 0.59 表 4 钢筋-MK/水泥砂浆和MK/水泥净浆的配合比
Table 4. Mix proportions of reinforcing steel-MK/cement mortar and MK/cement paste
Sample MK/
wt%Cement/
wt%Mass ratio of
water to binderMass ratio of
binder to sandWater reducer/
wt%Reinforcing steel-MK/cement mortar-0 0 100 0.4 1∶3 0 Reinforcing steel-MK/cement mortar-20 20 80 0.4 1∶3 0.13 Reinforcing steel-MK/cement mortar-30 30 70 0.4 1∶3 0.26 Reinforcing steel-MK/cement mortar-40 40 60 0.4 1∶3 0.36 MK/cement paste-0 0 100 0.4 0 0 MK/cement paste-20 20 80 0.4 0 0.13 MK/cement paste-30 30 70 0.4 0 0.26 MK/cement paste-40 40 60 0.4 0 0.36 表 5 钢筋-MK/水泥砂浆的电化学测试过程
Table 5. Electrochemical test process of reinforcing steel-MK/cement mortar
Stage Time/d Environment Electrochemical test 1 1–28 General environment Ecorr, EIS, CPP 2 32 3.5wt% NaCl solution Ecorr, EIS, CPP, CP Notes: Ecorr—Corrosion potential; EIS—Electrochemical impedance spectroscopy; CPP—Cyclic potentiodynamic polarization; CP—Cathodic polarization. 表 6 钢筋-MK/水泥砂浆的等效电路元件参数
Table 6. Parameters of equivalent circuit of reinforcing steel-MK/cement mortars
Sample Rct/(kΩ·cm2) Y0/(105 Ω−1·cm−2·sn) n Capp/(μF·cm−2) 1 d 28 d 3.5wt% NaCl 1 d 28 d 3.5wt% NaCl 1 d 28 d 3.5wt% NaCl 1 d 28 d 3.5wt% NaCl M0 2 012.0 6 462.2 6 452.2 3.40 2.43 2.46 0.90 0.93 0.90 54.8 35.9 42.7 M20 1 012.5 7 632.7 6 462.0 3.53 2.27 2.35 0.92 0.89 0.90 48.1 41.8 40.7 M30 423.4 3 972.5 2 844.7 3.00 2.42 2.28 0.91 0.93 0.92 40.6 34.9 32.9 M40 407.3 4 633.4 650.8 3.68 2.36 4.13 0.91 0.90 0.75 48.3 40.6 126.6 Notes: Rct—Charge transfer resistance on surface of reinforcing steel; Y0—Base admittance; n—Index of constant phase angle; Capp—Apparent interfacial capacitance. 表 7 钢筋-MK/水泥砂浆的循环动电位极化曲线电化学参数
Table 7. Electrochemical parameters of cyclic potentio dynamic polarization curves of reinforcing steel-MK/cement mortars
Sample Epit/mV Erep/mV ip/(μA·cm−2) 28 d 3.5wt% NaCl 28 d 3.5wt% NaCl 28 d 3.5wt% NaCl M0 662 682 674 716 0.073 0.078 M20 705 680 740 728 0.075 0.077 M30 680 695 726 744 0.076 0.075 M40 690 717 733 −66 0.080 0.222 Notes: Epit—Pitting potential; Erep—Repassivation potential; ip—Current density of passivation. 表 8 28 d时MK/水泥净浆的化学结合水含量
Table 8. Chemical bound water contents of MK/cement pastes for 28 d
wt% Sample C-S-H Ca(OH)2 CaCO3 P0 7.27 4.36 1.75 P20 11.68 1.65 — P30 12.00 0.95 — P40 12.12 — — Note: C-S-H—Calcium silicate hydrate. -
[1] STEFANONI M, ANGST U, ELSENER B. Corrosion rate of carbon steel in carbonated concrete: A critical review[J]. Cement and Concrete Research,2018,103:35-48. doi: 10.1016/j.cemconres.2017.10.007 [2] 柳俊哲, 沈建生, 闫加利, 等. 碳化与氯盐腐蚀作用下钢筋锈蚀物的微结构特征[J]. 复合材料学报, 2018, 35(9):2587-2592.LIU J Z, SHEN J S, YAN J L, et al. Microstructural characteristics of steel corrosion products under carbonation and chloride salt[J]. Acta Materiae Compositae Sinica,2018,35(9):2587-2592(in Chinese). [3] POON C S, LAM L, KOU S C, et al. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes[J]. Cement and Concrete Research,2001,31(9):1301-1306. [4] COURARD L, DARIMONT A, SCHOUTERDEN M, et al. Durability of mortars modified with metakaolin[J]. Cement and Concrete Research,2003,33(9):1473-1479. doi: 10.1016/S0008-8846(03)00090-5 [5] 乔春雨, 倪文, 王长龙. 较大偏高岭土掺量下偏高岭土-水泥硬化浆体性能与微观结构[J]. 建筑材料学报, 2015, 18(3):393-399. doi: 10.3969/j.issn.1007-9629.2015.03.007QIAO C Y, NI W, WANG C L. Properties and microstructure of metakaolin(MK)-cement hardened slurry with high use level of MK[J]. Journal of Building Materials,2015,18(3):393-399(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.03.007 [6] MO L, LV L, DENG M, et al. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste[J]. Cement and Concrete Research,2018,111:116-129. doi: 10.1016/j.cemconres.2018.06.003 [7] 李福海, 张桂斌, 周鸿屹, 等. 高活性偏高岭土及粉煤灰对碱骨料反应的抑制作用[J]. 建筑材料学报, 2017, 20(6):876-880. doi: 10.3969/j.issn.1007-9629.2017.06.008LI H F, ZHANG G B, ZHOU H Y, et al. Inhibiton effect of super metakaolin and fly ash on alkali-silica reaction in concrete[J]. Journal of Building Materials,2017,20(6):876-880(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.008 [8] KHATIB J M, WILD S. Sulphate resistance of metakaolin mortar[J]. Cement and Concrete Research,1998,28(1):83-92. doi: 10.1016/S0008-8846(97)00210-X [9] 国家质量技术监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.State Bureau of Quality and Technical Supervision. Method of testing cements: Determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese). [10] 中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中国标准出版社, 2007.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Common portland cement: GB 175—2007[S]. Beijing: China Standards Press, 2007(in Chinese). [11] BABAEE M, CASTEL A. Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete[J]. Cement and Concrete Research,2016,88:96-107. doi: 10.1016/j.cemconres.2016.05.012 [12] SONG G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cement and Concrete Research,2000,30(11):1723-1730. doi: 10.1016/S0008-8846(00)00400-2 [13] TANG F, CHEN G, VOLZ J S, et al. Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars[J]. Cement and Concrete Composites,2013,35(1):171-180. doi: 10.1016/j.cemconcomp.2012.08.009 [14] ZHENG H, DAI J G, POON C S, et al. Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars[J]. Cement and Concrete Research,2018,108:46-58. doi: 10.1016/j.cemconres.2018.03.001 [15] 姬永生, 王志龙, 徐从宇, 等. 混凝土中钢筋腐蚀过程的极化曲线分析[J]. 浙江大学学报(工学版), 2012, 46(8):1457-1464.JI Y S, WANG Z L, XU C Y, et al. Study on polarization curve diagrams of steel corrosion in concrete[J]. Journal of Zhejiang University (Engineering Science),2012,46(8):1457-1464(in Chinese). [16] MONTICELLI C, NATALI M E, BALBO A, et al. A study on the corrosion of reinforcing bars in alkali-activated fly ash mortars under wet and dry exposures to chloride solutions[J]. Cement and Concrete Research,2016,87:53-63. doi: 10.1016/j.cemconres.2016.05.010 [17] 施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4):452-458. doi: 10.3969/j.issn.1007-9629.2011.04.004SHI J J, SUN W, GENG G Q. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials,2011,14(4):452-458(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.04.004 [18] ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM C876—09[S]. West Conshohocken: ASTM International, 2009. [19] SERDAR M, POYET S, L'HOSTIS V, et al. Carbonation of low-alkalinity mortars: Influence on corrosion of steel and on mortar microstructure[J]. Cement and Concrete Research,2017,101:33-45. [20] PECH-CANUL M A, CASTRO P. Corrosion measurement of steel reinforcement in concrete exposed to a tropical marine atmosphere[J]. Cement and Concrete Research,2002,32(3):491-498. doi: 10.1016/S0008-8846(01)00713-X [21] VEDALAKSHMI R, PALANISWAMY N. Analysis of the electrochemical phenomenon at the rebar-concrete interface using the electrochemical impedance spectroscopic technique[J]. Magazine of Concrete Research,2010,62(3):177-189. doi: 10.1680/macr.2010.62.3.177 [22] LIU E, GHANDEHARI M, BRÜCKNER C, et al. Mapping high pH levels in hydrated calcium silicates[J]. Cement and Concrete Research,2017,95:232-239. doi: 10.1016/j.cemconres.2017.02.001