留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏高岭土对水泥砂浆中钢筋钝化的影响

李闯 范颖芳 李秋超

李闯, 范颖芳, 李秋超. 偏高岭土对水泥砂浆中钢筋钝化的影响[J]. 复合材料学报, 2020, 37(11): 2917-2927. doi: 10.13801/j.cnki.fhclxb.20200305.001
引用本文: 李闯, 范颖芳, 李秋超. 偏高岭土对水泥砂浆中钢筋钝化的影响[J]. 复合材料学报, 2020, 37(11): 2917-2927. doi: 10.13801/j.cnki.fhclxb.20200305.001
LI Chuang, FAN Yingfang, LI Qiuchao. Influence of metakaolin on passivation of reinforcing steel in cement mortar[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2917-2927. doi: 10.13801/j.cnki.fhclxb.20200305.001
Citation: LI Chuang, FAN Yingfang, LI Qiuchao. Influence of metakaolin on passivation of reinforcing steel in cement mortar[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2917-2927. doi: 10.13801/j.cnki.fhclxb.20200305.001

偏高岭土对水泥砂浆中钢筋钝化的影响

doi: 10.13801/j.cnki.fhclxb.20200305.001
基金项目: 国家自然科学基金面上项目(51578099);大连海事大学基础性学科经费
详细信息
    通讯作者:

    范颖芳,博士,教授,研究方向为混凝土结构耐久性 E-mail:fanyf@dlmu.edu.cn

  • 中图分类号: TU528.33

Influence of metakaolin on passivation of reinforcing steel in cement mortar

  • 摘要: 利用电化学阻抗谱、循环动电位极化、阴极极化、热重和XRD等方法,研究了偏高岭土(MK)掺量(占MK/水泥总质量的20wt%、30wt%、40wt%)对钢筋-MK/水泥砂浆中钢筋钝化膜形成及其耐蚀性能的影响。结果表明:在一般环境中,钢筋在不同MK掺量的钢筋-MK/水泥砂浆中均可以形成稳定的钝化膜;在质量分数为3.5wt%的NaCl溶液环境中,MK掺量过多会使钢筋-MK/水泥砂浆中钢筋的钝化膜稳定性降低,耐蚀性能下降。从钢筋钝化膜稳定角度考虑,在氯盐环境中,水泥基材料中MK掺量应予以限制。

     

  • 图  1  MK的XRD图谱

    Figure  1.  XRD pattern of MK

    图  2  MK和水泥的粒径分布

    Figure  2.  Particle size distribution of MK and cement

    图  3  钢筋-MK/水泥砂浆的几何尺寸

    Figure  3.  Geometry of reinforcing steel-MK/cement mortar

    图  4  28 d内钢筋-MK/水泥砂浆的腐蚀电位

    Figure  4.  Corrosion potential of reinforcing steel-MK/cement mortars in 28 d

    M0—Reinforcing steel-MK/cement mortar-0; M20—Reinforcing steel-MK/cement mortar-20; M30—Reinforcing steel-MK/cement mortar-30; M40—Reinforcing steel-MK/cement mortar-40

    图  5  3.5wt% NaCl溶液浸泡前后钢筋-MK/水泥砂浆的腐蚀电位

    Figure  5.  Corrosion potential of reinforcing steel-MK/cement mortars before and after immersion in 3.5wt% NaCl solution

    图  6  养护1 d和28 d 后钢筋-MK水泥砂浆的电化学阻抗谱

    Figure  6.  Eletrochemical impedance spectroscopy plots of reinforcing steel-MK/cement mortars for 1 d and 28 d

    图  7  经3.5wt%NaCl溶液浸泡后钢筋-MK/水泥砂浆的电化学阻抗谱

    Figure  7.  Eletrochemical impedance spectroscopy plots of reinforcing steel-MK/cement mortars after immersion in 3.5wt% NaCl solution

    图  8  钢筋-MK/水泥砂浆电化学阻抗谱的等效电路

    Figure  8.  Equivalent circuit of eletrochemical impedance spectroscopy of reinforcing steel-MK/cement mortar

    图  9  钢筋-MK/水泥砂浆在3.5wt% NaCl溶液中的阴极极化曲线

    Figure  9.  Cathodic curves of reinforcing steel-MK/cement mortars in 3.5wt% NaCl solution

    图  10  循环动电位极化曲线示意图

    Figure  10.  Schematic diagram of cyclic potentio dynamic polarization curve

    图  11  养护28 d和经3.5wt% NaCl溶液浸泡后钢筋-MK/水泥砂浆的循环动电位极化曲线

    Figure  11.  Cyclic potentiodynamic polarization curves of reinforcing steel-MK/cement mortars after curing 28 d and after immersion in 3.5wt% NaCl solution

    图  12  MK/水泥净浆的XRD图谱(28 d)

    Figure  12.  XRD patterns of MK/cement pastes (28 d)

    P0—MK/cement paste-0; P20—MK/cement paste-20; P30—MK/cement paste-30; P40—MK/cement paste-40

    图  13  MK/水泥净浆的TG和DTG曲线(28 d)

    Figure  13.  TG and DTG curves of MK/cement pastes (28 d)

    图  14  经酚酞溶液浸润后MK/水泥净浆颜色变化(28 d)

    Figure  14.  Color variation of MK/cement pastes after soaking with phenolphthalein solution (28 d)

    表  1  水泥化学组成

    Table  1.   Chemical composition of cement

    wt%
    SiO2Al2O3Fe2O3CaOMgOSO3Na2Oeqf-CaOClIgnition loss
    21.884.313.4762.391.722.560.231.520.0161.42
    Notes: Na2Oeq—Content of volatile alkaline; f-CaO—Free CaO[10].
    下载: 导出CSV

    表  2  水泥物理力学性能

    Table  2.   Physical and mechanical properties of cement

    Density/
    (g.cm–2)
    Standard
    consistency/%
    Compressive strength
    of 3 d/MPa
    Flexural strength
    of 3 d/MPa
    Setting time/min
    Initial settingFinal setting
    3.152526.65.3186248
    下载: 导出CSV

    表  3  偏高岭土(MK)化学组成

    Table  3.   Chemical composition of metakaolin(MK)

    wt%
    SiO2Al2O3Fe2O3CaOMgOSO3K2ON2OIgnition loss
    49.4043.880.510.272.660.140.231.520.59
    下载: 导出CSV

    表  4  钢筋-MK/水泥砂浆和MK/水泥净浆的配合比

    Table  4.   Mix proportions of reinforcing steel-MK/cement mortar and MK/cement paste

    SampleMK/
    wt%
    Cement/
    wt%
    Mass ratio of
    water to binder
    Mass ratio of
    binder to sand
    Water reducer/
    wt%
    Reinforcing steel-MK/cement mortar-001000.41∶30
    Reinforcing steel-MK/cement mortar-2020800.41∶30.13
    Reinforcing steel-MK/cement mortar-3030700.41∶30.26
    Reinforcing steel-MK/cement mortar-4040600.41∶30.36
    MK/cement paste-001000.400
    MK/cement paste-2020800.400.13
    MK/cement paste-3030700.400.26
    MK/cement paste-4040600.400.36
    下载: 导出CSV

    表  5  钢筋-MK/水泥砂浆的电化学测试过程

    Table  5.   Electrochemical test process of reinforcing steel-MK/cement mortar

    StageTime/dEnvironmentElectrochemical test
    11–28General environmentEcorr, EIS, CPP
    2323.5wt% NaCl solutionEcorr, EIS, CPP, CP
    Notes: Ecorr—Corrosion potential; EIS—Electrochemical impedance spectroscopy; CPP—Cyclic potentiodynamic polarization; CP—Cathodic polarization.
    下载: 导出CSV

    表  6  钢筋-MK/水泥砂浆的等效电路元件参数

    Table  6.   Parameters of equivalent circuit of reinforcing steel-MK/cement mortars

    SampleRct/(kΩ·cm2)Y0/(105 Ω−1·cm−2·sn)nCapp/(μF·cm−2)
    1 d28 d3.5wt% NaCl1 d28 d3.5wt% NaCl1 d28 d3.5wt% NaCl1 d28 d3.5wt% NaCl
    M0 2 012.0 6 462.2 6 452.2 3.40 2.43 2.46 0.90 0.93 0.90 54.8 35.9 42.7
    M20 1 012.5 7 632.7 6 462.0 3.53 2.27 2.35 0.92 0.89 0.90 48.1 41.8 40.7
    M30 423.4 3 972.5 2 844.7 3.00 2.42 2.28 0.91 0.93 0.92 40.6 34.9 32.9
    M40 407.3 4 633.4 650.8 3.68 2.36 4.13 0.91 0.90 0.75 48.3 40.6 126.6
    Notes: Rct—Charge transfer resistance on surface of reinforcing steel; Y0—Base admittance; n—Index of constant phase angle; Capp—Apparent interfacial capacitance.
    下载: 导出CSV

    表  7  钢筋-MK/水泥砂浆的循环动电位极化曲线电化学参数

    Table  7.   Electrochemical parameters of cyclic potentio dynamic polarization curves of reinforcing steel-MK/cement mortars

    SampleEpit/mVErep/mVip/(μA·cm−2)
    28 d3.5wt% NaCl28 d3.5wt% NaCl28 d3.5wt% NaCl
    M0 662 682 674 716 0.073 0.078
    M20 705 680 740 728 0.075 0.077
    M30 680 695 726 744 0.076 0.075
    M40 690 717 733 −66 0.080 0.222
    Notes: Epit—Pitting potential; Erep—Repassivation potential; ip—Current density of passivation.
    下载: 导出CSV

    表  8  28 d时MK/水泥净浆的化学结合水含量

    Table  8.   Chemical bound water contents of MK/cement pastes for 28 d wt%

    SampleC-S-HCa(OH)2CaCO3
    P07.274.361.75
    P2011.681.65
    P3012.000.95
    P4012.12
    Note: C-S-H—Calcium silicate hydrate.
    下载: 导出CSV
  • [1] STEFANONI M, ANGST U, ELSENER B. Corrosion rate of carbon steel in carbonated concrete: A critical review[J]. Cement and Concrete Research,2018,103:35-48. doi: 10.1016/j.cemconres.2017.10.007
    [2] 柳俊哲, 沈建生, 闫加利, 等. 碳化与氯盐腐蚀作用下钢筋锈蚀物的微结构特征[J]. 复合材料学报, 2018, 35(9):2587-2592.

    LIU J Z, SHEN J S, YAN J L, et al. Microstructural characteristics of steel corrosion products under carbonation and chloride salt[J]. Acta Materiae Compositae Sinica,2018,35(9):2587-2592(in Chinese).
    [3] POON C S, LAM L, KOU S C, et al. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes[J]. Cement and Concrete Research,2001,31(9):1301-1306.
    [4] COURARD L, DARIMONT A, SCHOUTERDEN M, et al. Durability of mortars modified with metakaolin[J]. Cement and Concrete Research,2003,33(9):1473-1479. doi: 10.1016/S0008-8846(03)00090-5
    [5] 乔春雨, 倪文, 王长龙. 较大偏高岭土掺量下偏高岭土-水泥硬化浆体性能与微观结构[J]. 建筑材料学报, 2015, 18(3):393-399. doi: 10.3969/j.issn.1007-9629.2015.03.007

    QIAO C Y, NI W, WANG C L. Properties and microstructure of metakaolin(MK)-cement hardened slurry with high use level of MK[J]. Journal of Building Materials,2015,18(3):393-399(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.03.007
    [6] MO L, LV L, DENG M, et al. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste[J]. Cement and Concrete Research,2018,111:116-129. doi: 10.1016/j.cemconres.2018.06.003
    [7] 李福海, 张桂斌, 周鸿屹, 等. 高活性偏高岭土及粉煤灰对碱骨料反应的抑制作用[J]. 建筑材料学报, 2017, 20(6):876-880. doi: 10.3969/j.issn.1007-9629.2017.06.008

    LI H F, ZHANG G B, ZHOU H Y, et al. Inhibiton effect of super metakaolin and fly ash on alkali-silica reaction in concrete[J]. Journal of Building Materials,2017,20(6):876-880(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.008
    [8] KHATIB J M, WILD S. Sulphate resistance of metakaolin mortar[J]. Cement and Concrete Research,1998,28(1):83-92. doi: 10.1016/S0008-8846(97)00210-X
    [9] 国家质量技术监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    State Bureau of Quality and Technical Supervision. Method of testing cements: Determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [10] 中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Common portland cement: GB 175—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [11] BABAEE M, CASTEL A. Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete[J]. Cement and Concrete Research,2016,88:96-107. doi: 10.1016/j.cemconres.2016.05.012
    [12] SONG G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cement and Concrete Research,2000,30(11):1723-1730. doi: 10.1016/S0008-8846(00)00400-2
    [13] TANG F, CHEN G, VOLZ J S, et al. Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars[J]. Cement and Concrete Composites,2013,35(1):171-180. doi: 10.1016/j.cemconcomp.2012.08.009
    [14] ZHENG H, DAI J G, POON C S, et al. Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars[J]. Cement and Concrete Research,2018,108:46-58. doi: 10.1016/j.cemconres.2018.03.001
    [15] 姬永生, 王志龙, 徐从宇, 等. 混凝土中钢筋腐蚀过程的极化曲线分析[J]. 浙江大学学报(工学版), 2012, 46(8):1457-1464.

    JI Y S, WANG Z L, XU C Y, et al. Study on polarization curve diagrams of steel corrosion in concrete[J]. Journal of Zhejiang University (Engineering Science),2012,46(8):1457-1464(in Chinese).
    [16] MONTICELLI C, NATALI M E, BALBO A, et al. A study on the corrosion of reinforcing bars in alkali-activated fly ash mortars under wet and dry exposures to chloride solutions[J]. Cement and Concrete Research,2016,87:53-63. doi: 10.1016/j.cemconres.2016.05.010
    [17] 施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4):452-458. doi: 10.3969/j.issn.1007-9629.2011.04.004

    SHI J J, SUN W, GENG G Q. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials,2011,14(4):452-458(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.04.004
    [18] ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM C876—09[S]. West Conshohocken: ASTM International, 2009.
    [19] SERDAR M, POYET S, L'HOSTIS V, et al. Carbonation of low-alkalinity mortars: Influence on corrosion of steel and on mortar microstructure[J]. Cement and Concrete Research,2017,101:33-45.
    [20] PECH-CANUL M A, CASTRO P. Corrosion measurement of steel reinforcement in concrete exposed to a tropical marine atmosphere[J]. Cement and Concrete Research,2002,32(3):491-498. doi: 10.1016/S0008-8846(01)00713-X
    [21] VEDALAKSHMI R, PALANISWAMY N. Analysis of the electrochemical phenomenon at the rebar-concrete interface using the electrochemical impedance spectroscopic technique[J]. Magazine of Concrete Research,2010,62(3):177-189. doi: 10.1680/macr.2010.62.3.177
    [22] LIU E, GHANDEHARI M, BRÜCKNER C, et al. Mapping high pH levels in hydrated calcium silicates[J]. Cement and Concrete Research,2017,95:232-239. doi: 10.1016/j.cemconres.2017.02.001
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  1629
  • HTML全文浏览量:  539
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 录用日期:  2020-02-22
  • 网络出版日期:  2020-03-05
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回