Mechanical properties of activated carbon/high density polyethylene composites
-
摘要: 以稻壳为原料,以H3PO4、KOH、ZnCl2为活化剂在600℃条件下制备三种活性炭,以生物炭、三种活性炭为填料填充高密度聚乙烯(HDPE)制备生物炭/HDPE复合材料和活性炭/HDPE复合材料,并对其力学性能进行测试和分析。结果表明,活性炭比生物炭具有更高的比表面积和发达的孔隙结构,其中经H3PO4活化制备的活性炭比表面积最高,为714.27 m2/g;活性炭/HDPE复合材料比生物炭/HDPE复合材料具有更佳的力学性能,相对于其他材料而言,经H3PO4活化制备的活性炭/HDPE复合材料具有较佳的弯曲性能、拉伸性能、刚性、弹性、抗蠕变性能及抗应力松弛能力,其弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为38.66 MPa、2.46 GPa、32.17 MPa、1.95 GPa。本研究可为活性炭的材料化利用提供有益的借鉴经验。
-
关键词:
- 活性炭 /
- 高密度聚乙烯(HDPE) /
- 复合材料 /
- 力学性能 /
- 生物炭
Abstract: Three kinds of activated carbon were prepared from rice husk with H3PO4, KOH, ZnCl2 as activating agents at 600℃. The biochar and three kinds of activated carbon were used to reinforce high density polyethylene (HDPE) to prepare biochar/HDPE composites and activated carbon/HDPE composites. The mechanical properties of the composites were tested and analyzed. The results show that higher specific surface area and more developed pore structure are obtained in activated carbon than in biochar, and better mechanical properties are obtained in activated carbon/HDPE composites than biochar/HDPE composites. Besides, the highest specific surface area of 714.27m2/g is obtained in activated carbon which is activated by H3PO4 (activated carbon(H3PO4)), and better comprehensive mechanical properties are obtained for activated carbon(H3PO4)/HDPE composite due to its excellent flexural properties, tensile properties, rigidity, elasticity, creep resistance and anti-stress relaxation ability. The flexural strength, flexural modulus, tensile strength and tensile modulus of the activated carbon(H3PO4)/HDPE composite are 38.66 MPa, 2.46 GPa, 32.17 MPa and 1.95 GPa, respectively. This study can provide useful experience for utilization of activated carbon in composites.-
Key words:
- activated carbon /
- high density polyethylene(HDPE) /
- composites /
- mechanical properties /
- biochar
-
表 1 活性炭编号
Table 1. Number of activated carbon
No. Activating agent HAC H3PO4 KAC KOH ZnAC ZnCl2 表 2 生物炭和三种活性炭孔隙特性
Table 2. Pore characteristics of biochar and three activated carbons
Sample SBET/(m2·g−1) Vtotal/(cm3·g−1) Dave/nm Biochar 297.36 0.15 8.96 HAC 714.27 0.37 2.10 KAC 486.18 0.28 2.32 ZnAC 701.94 0.48 2.75 Notes: SBET—Specific surface area; Vtotal—Total pore volume; Dave—Average pore size. -
[1] LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427. doi: 10.1007/s11027-005-9006-5 [2] PAZ-FERREIRO J, NIETO A, MÉNDEZ A, et al. Biochar from biosolids pyrolysis: A review[J]. International Journal of Environmental Research and Public Health,2018,15(5):956-972. doi: 10.3390/ijerph15050956 [3] 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2):83-89. doi: 10.3969/j.issn.1009-1742.2011.02.015CHEN W F, ZHANG W M, MENG J, et al. Researches on biochar application technology[J]. Engineering Science,2011,13(2):83-89(in Chinese). doi: 10.3969/j.issn.1009-1742.2011.02.015 [4] DAS O, SARMAH A K, BHATTACHARYYA D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites[J]. Waste Management,2015,38:132-140. doi: 10.1016/j.wasman.2015.01.015 [5] HO M P, LAU K T, WANG H, et al. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles[J]. Composites Part B: Engineering,2015,81:14-25. doi: 10.1016/j.compositesb.2015.05.048 [6] 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050.ZHANG Q F, YANG K Y, CAI H Z, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3044-3050(in Chinese). [7] LI S, LI X, DENG Q, et al. Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties[J]. Materials and Design,2015,85:54-59. doi: 10.1016/j.matdes.2015.06.163 [8] QIAN S, ZHANG H, YAO W, et al. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites[J]. Composites Part B: Engineering,2018,133:203-209. doi: 10.1016/j.compositesb.2017.09.040 [9] RICHHARD S, RAJADURAI J S, MANIKANDAN V. Effects of particle loading and particle size on tribological properties of biochar particulate reinforced polymer composites[J]. Journal of Tribology,2017,139(1):012202. doi: 10.1115/1.4033131 [10] DAS O, BHATTACHARRYA D, HUI D, et al. Mechanical and flammability characterisations of biochar/polypropylene biocomposites[J]. Composites Part B: Engineering,2016,106:120-128. doi: 10.1016/j.compositesb.2016.09.020 [11] ANDRZEJEWSKI J, MISRA M, MOHANTY A K. Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization[J]. Journal of Applied Polymer Science,2018,135(28):46449. doi: 10.1002/app.46449 [12] NAN N, DEVALLANCE D B, XIE X, et al. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites[J]. Journal of Composite Materials,2016,50(9):1161-1168. doi: 10.1177/0021998315589770 [13] GIORCELLI M, KHAN A, PUGNO N M, et al. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties[J]. Biomass and Bioenergy,2019,120:219-223. doi: 10.1016/j.biombioe.2018.11.036 [14] CODOU A, MISRA M, MOHANTY A K. Sustainable biocarbon reinforced nylon 6/polypropylene compatibilized blends: Effect of particle size and morphology on performance of the biocomposites[J]. Composites Part A: Applied Science and Manufacturing,2018,112:1-10. doi: 10.1016/j.compositesa.2018.05.018 [15] SHE D, DONG J, ZHANG J, et al. Development of black and biodegradable biochar/guttapercha composite films with high stretchability and barrier properties[J]. Composites Science and Technology,2019,175:1-5. doi: 10.1016/j.compscitech.2019.03.007 [16] 王海莹, 余晓, 李穗奕, 等. 热塑性塑料/生物炭复合材料研究进展[J]. 工程塑料应用, 2018, 46(12):139-142. doi: 10.3969/j.issn.1001-3539.2018.12.027WANG H Y, YU X, LI S Y, et al. Research progress of thermoplastic/biomass charcoal composites[J]. Engeering Plastics Application,2018,46(12):139-142(in Chinese). doi: 10.3969/j.issn.1001-3539.2018.12.027 [17] DAS O, SARMAH A K, BHATTACHRYYA D. A sustainable and resilient approach through biochar addition in wood polymer composites[J]. Science of the Total Environment,2015,512-513:326-336. [18] BEHAZIN E, MISRA M, MOHANTY A K. Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites[J]. Composites Part B: Engineering,2017,118:116-124. doi: 10.1016/j.compositesb.2017.03.003 [19] LI S, HUANG A, CHEN Y J, et al. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding[J]. Composites Part B: Engineering,2018,153:277-284. doi: 10.1016/j.compositesb.2018.07.049 [20] POULOSE A M, ELNOUR A Y, ANIS A, et al. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics[J]. Science of the Total Environment,2017,619-620:311-318. [21] YANG Q, WANG X, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology,2018,247:537-544. doi: 10.1016/j.biortech.2017.09.136 [22] SPESSATO L, BEDIN K C, CAZETTA A L, et al. KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles[J]. Journal of Hazardous Materials,2019,371:499-505. doi: 10.1016/j.jhazmat.2019.02.102 [23] XING X, JIANG W, LI S, et al. Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl2-H3PO4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis[J]. Waste Management,2019,89:64-72. doi: 10.1016/j.wasman.2019.04.002 [24] HUANG Y, MA E, ZHAO G. Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers[J]. Industrial Crops and Products,2015,69:447-455. doi: 10.1016/j.indcrop.2015.03.002 [25] 张庆法, 蔡红珍, 周亮, 等. 含炭量对木炭/聚丙烯复合材料性能的影响[J]. 农业工程学报, 2018, 34(23):254-259. doi: 10.11975/j.issn.1002-6819.2018.23.033ZHANG Q F, CAI H Z, ZHOU L, et al. Effect of charcoal content on properties of charcoal/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(23):254-259(in Chinese). doi: 10.11975/j.issn.1002-6819.2018.23.033 [26] DAS O, HEDENQVIST M S, JOHANSSON E, et al. An all-gluten biocomposite: Comparisons with carbon black and pine char composites[J]. Composites Part A: Applied Science and Manufacturing,2019,120:42-48. doi: 10.1016/j.compositesa.2019.02.015 [27] 赵玲, 严兴, 尹平河, 等. 甘蔗渣制取活性炭的强度和稳定性研究[J]. 农业环境科学学报, 2009, 28(6):1298-1301. doi: 10.3321/j.issn:1672-2043.2009.06.036ZHAO L, YAN X, YIN P H, et al. Strength and stability study on activated charcoal abstracted from bagasse[J]. Journal of Agro-Environment Science,2009,28(6):1298-1301(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.06.036 [28] ZHANG Q, CAI H, REN X, et al. The dynamic mechanical analysis of highly filled rice husk biochar/high-density polyethylene composites[J]. Polymers,2017,9(11):628-638. doi: 10.3390/polym9110628 [29] HUNG K C, WU T L, CHEN Y L, et al. Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites[J]. Construction and Building Materials,2016,108:139-145. doi: 10.1016/j.conbuildmat.2016.01.039 [30] DAVIS A M, HANZLY L E, DEBUTTS B L, et al. Characterization of dimensional stability in flax fiber reinforced polypropylene composites[J]. Polymer Composites,2019,40(1):132-140. doi: 10.1002/pc.24614 [31] OBAID N, KORTSCHOT M T, SAIN M. Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites[J]. Composites Science and Technology,2018,161:85-91. doi: 10.1016/j.compscitech.2018.04.004 [32] GEZAHEGN S, LAI R, HUANG L, et al. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites[J]. Science of The Total Environment,2019,664:363-373. doi: 10.1016/j.scitotenv.2019.01.408 [33] YANG X, KANG K, QIU L, et al. Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches[J]. Renewable Energy,2020,146:1691-1699. doi: 10.1016/j.renene.2019.07.148 [34] LI S, LI X, CHEN C, et al. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network[J]. Composites Science and Technology,2016,132:31-37. doi: 10.1016/j.compscitech.2016.06.010 [35] 姚文超, 钱少平, 盛奎川, 等. 超微竹炭增强聚丙烯复合材料的制备与性能[J]. 复合材料学报, 2017, 34(12):2661-2667.YAO W C, QIAN S P, SHENG K C, et al. Fabrication and properties of polypylene matrix composites reinforced by ultrafine bamboo-char[J]. Acta Materiae Compositae Sinica,2017,34(12):2661-2667(in Chinese).