Simulation and experiment of key influencing factors on ballistic performance of SiC-ultra-high molecular weight polyethylene biomimetic flexible laminated structure
-
摘要: 基于仿生学原理构建一种鱼鳞状的柔性叠层防护装具,仿生鳞片为中间厚边缘薄的双层复合结构,上下层分别为SiC陶瓷和超高分子量聚乙烯(UHMWPE)。采用ANSYS LS-DYNA软件的显式分析方法模拟了SiC-UHMWPE柔性叠层结构的防弹性能,主要从装具变形量、应力传递规律、能量耗散机制和子弹残余速度展开分析,重点研究了支撑点数量、曲率半径及覆盖角对防护性能的影响。鳞片单排与多排排列时背面垫料的凹陷深度仿真结果分别为32.52 mm和24.73 mm。本文依据NIJ标准Ⅲ级要求对柔性防护装具进行实弹测试。结果表明,试件在多发子弹侵彻后,出现局部两点支撑的不利情形。该成果将对新型柔性防护装具的设计和制备具有重要意义。Abstract: Based on the principle of bionics, a fish scale like flexible laminated protective device was built. The bionic scale is a double-layer composite with thick central region and thin edges. The upper and lower layers of the bionic scale were made of SiC ceramic and ultra-high molecular weight polyethylene (UHMWPE), respectively. The explicit analysis method in the ANSYS LS-DYNA software was used to simulate the ballistic performance of the SiC-UHMWPE flexible laminated structure. The analysis included the deformation, stress transfer pattern and energy dissipation mechanism of the device and the residual velocity of bullet, and mainly focused on the effects of the number of support points, the radius of curvature and the overlapping angle. The simulated backface signatures for the protective device with one row scales and multiple rows scales are 32.52 mm and 24.73 mm, respectively. Ballistic tests were conducted on the bio-inspired flexible protection device according to the requirements of level Ⅲ of the NIJ standard. The results show that there is an unfavorable mode of two-point support at the local area after multiple impacts of bullets. This study will be valuable for the design and manufacture of new flexible protective devices.
-
图 1 SiC-超高分子量聚乙烯(UHMWPE)仿生柔性防护装具结构设计示意图:(a)真实鱼鳞片排列模式; (b)单个鱼鳞片; (c)鳞片截面; (d)仿生鳞片排列; (e)仿生复合鳞片截面; (f)仿生防护装具
Figure 1. Schematic diagram of structural design of SiC-ultra-high molecular weight polyethylene (UHMWPE) bionic flexible protection device: (a) Arrangement structure of the real fish scale; (b) Demonstration of an individual scale; (c) Cross-section of a scale; (d) Bionic scale arrangement pattern; (e) Cross-section of a bionic composite scale; (f) Bionic protection device
θ1—Overlapping angle; L—Bionic scale diameter; R—Bionic scale radius; P—Contact point of bionic scale; r—Radius of arc of bionic scale
图 8 SiC-UHMWPE 模型C与模型A的应力传递规律: (a) 模型C应力影响区域图; (b)子弹残余速度为0时模型C和模型A支撑鳞片等效应力图
Figure 8. Stress transfer patterns of model C and model A for SiC-UHMWPE: (a) Stress affected region in model C; (b) Von Mises stress contour of supporting scales in model C and model A when bullet’s residual velocity is zero
表 1 有限元模型命名
Table 1. Finite element model naming
Mark Name Named annotation Model A a0c80 Flat model of single-row arrangement of scales with rotation angle α=0° and coverage angle θ1=80°. Model B a0c100 Flat model of single-row arrangement of scales with rotation angle α=0° and coverage angle θ1=100°. Model C 5x5a0c80 Flat model of 5 scales in the horizontal and vertical directions with the rotation angle α=0°, coverage angle θ1=80°. Model D a4c100 Curved model of single-row arrangement of scales with rotation angle α=4° and coverage angle θ1=100°. Model E a0c80gel Flat model of single-row arrangement of scales with rotation angle α=0°, coverage angle θ1=80°, and backing materials (gel) at bottom. Model F 5x5a0c80gel Flat model of 5 scales in the horizontal and vertical directions with rotation angle α=0°, coverage angle θ1=80°, and backing materials (gel) at bottom. 表 2 SiC陶瓷材料模型参数
Table 2. Material model parameters of SiC
ρ/(g·cm−3) G/GPa A B C M N 3.163 127 0.96 0.35 0 1.0 0.65 EPSI Tensile strength /
GPaNormalized fracture strength HEL/GPa HEL pressure/GPa HEL vol. strain HEL strength/GPa 1.0 0.37 0.8 14.567 5.9 — 13.0 D1 D2 K1/GPa K2/GPa K3/GPa Beta PSFAIL 0.48 0.48 204.785 0 0 1.0 — Notes: ρ—Density; G—Shear modulus; A—Intact normalized strength parameter; B—Fractured normalized strength parameter; C—Strength parameter (for strain rate dependence); M—Fractured strength parameter (pressure exponent); N—Intact strength parameter (pressure exponent); EPSI—Reference strain rate; HEL—Hugoniot elastic limit; vol.—Volumetric; D1—Parameter for plastic strain to fracture; D2—Parameter for plastic strain to fracture (exponent); K1—First pressure coefficient (equivalent to the bulk modulus); K2—Second pressure coefficient; K3—Elastic constants; Beta—Fraction of elastic energy loss converted to hydrostatic energy; PSFAIL—Effective plastic strain at failure. 表 3 超高分子量聚乙烯(UHMWPE)材料特性参数
Table 3. Material model parameters of ultra-high molecular weight polyethylene(UHMWPE)
ρ/(g·cm−3) P1 P2 P3 P4 P5 P6 0.97 5.796 5.796 6.12561 0.025 3.58889 0.41368 P7 P8 P9 P10 P11 P12 P13 0.25 3.709 2.884 1 0.05 6.6939 0.05 P14 P15 P16 P17 P18 P19 P20 2.29 2.29 0.025 0.2645 0 0.185 1.3328 P21 P22 P23 P24 P25 P26 P27 0.28285 4.63 0.28285 4.63 0.28285 2.25 −0.005 Notes: P1, P2, P3—Moduli of elasticity in x, y and z directions; P4—Stretching poisson’s ratio in xy plane; P5—Shear modulus in xy plane; P6—Yield stress in xy plane; P7—Failure strain in xy direction; P8, P9—Linear buckling parameters; P10—Unloading modulus factor in xy plane; P11—xy plane; P12—Unloading modulus in z direction; P13—Tensile modulus factor in z direction; P14, P15, P16—Shear moduli in yz, zx and xy planes; P17—Compression failure strain in z direction; P18—Tensile failure strain in z direction; P19—Local strain of area 1 in z direction; P20—Modulus of elasticity of area 1 in z direction; P21, P22—C, P parameters of area 2; P23, P24—C, P parameters of area 1; P25, P26—C, P parameters in xy plane; P27—Parameter of strain rate. 表 4 凯夫拉(Kevlar)材料模型参数
Table 4. Material model parameters of Kevlar
ρ/(g·cm−3) Ea/GPa Eb/GPa Gab1/GPa Gab2/GPa Gab3/GPa Gbc/GPa 0.8 32.69 32.69 0.004 0.042 0.349 0.349 Gca/GPa Gamab1 Gamab2 Ea,crimpfac Eb,crimpfac εa,crimp εb,crimp 0.349 0.25 0.35 0.06 0.20 0.007 0.0025 Ea,softfac Eb,softfac Eunloadfac Ecompfac εa,max εb,max σpost/GPa −2.20 −5.60 1.5 0.005 0.023 0.02 0.01 CCE PCE CSE dfac εmax εa,fail εb,fail 0.005 40.00 0.005 0.30 0.035 0.20 0.20 Notes: Ea, Eb—Moduli of elasticity in the longitudinal and transverse directions; Gab1, Gab2, Gab3—Shear moduli Gabi correspond to the slope of the ith segment; Gbc, Gca—Shear moduli in bc and ca directions; Gamab1, Gamab2—Shear strains Gamabi correspond to the slope of the ith segment; Ea,crimpfac, Eb,crimpfac—Factors for crimp region modulus of elasticity in longitudinal and transverse directions; εa,crimp, εb,crimp—Crimp strains in longitudinal and transverse directions; Ea,softfac, Eb,softfac—Factors for post-peak region modulus of elasticity in longitudinal and transverse directions; Eunloadfac, Ecompfac—Factors for unloading and compression zone modulus of elasticity; εa,max, εb,max—Strains at peak stress in longitudinal and transverse directions; σpost—Stress value in post-peak region at which nonlinear behavior begins; CCE, PCE, CSE—Cowper-Symonds factors; dfac—Damage factor; εmax—Erosion strain of element; εa,fail, εb,fail—Erosion strains in longitudinal and transverse directions. 表 5 弹壳及弹芯材料模型参数
Table 5. Material model parameters of bullet jacket and core
Material parameter Density/
(g·cm−3)Young’s modulus/
GPaPoisson’s ratio Yield stress/
GPaTagent modulus/
GPaHardening parameter Strain rate parameter (SRC) Strain rate parameter (SRP) Failure strain Bullet jacket 8.858 117 0.4 0.345 0 0 0 0 1.0 Bullet core 11.270 17 0.4 0.008 0.015 0.2 0.6 3.0 3.0 -
[1] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms: A review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures,2019,223:110966. doi: 10.1016/j.compstruct.2019.110966 [2] CROUCH I G. Body armour: New materials, new systems[J]. Defence Technology,2019,15(3):241-253. doi: 10.1016/j.dt.2019.02.002 [3] WHITE Z W, VERNEREY F J. Armours for soft bodies: How far can bioinspiration take us[J]. Bioinspiration & Biomimetics,2018,13(4):041004. [4] ZHU D, SZEWCIW L, VERNEREY F, et al. Puncture resistance of the scaled skin from striped bass: Collective mechanisms and inspiration for new flexible armor designs[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,24:30-40. doi: 10.1016/j.jmbbm.2013.04.011 [5] ZHU D, ORTEGA C F, MOTAMEDI R, et al. Structure and mechanical performance of a “Modern” fish scale[J]. Advanced Engineering Materials,2012,14(4):185-194. doi: 10.1002/adem.201180057 [6] YANG W, SHERMAN V R, GLUDOVATZ B, et al. Protective role of Arapaima gigas fish scales: Structure and mechanical behavior[J]. Acta Biomaterialia,2014,10(8):3599-3614. doi: 10.1016/j.actbio.2014.04.009 [7] VERNEREY F J, BARTHELAT F. Skin and scales of teleost fish: Simple structure but high performance and multiple functions[J]. Journal of the Mechanics and Physics of Solids,2014,68:66-76. doi: 10.1016/j.jmps.2014.01.005 [8] VERNEREY F J, BARTHELAT F. On the mechanics of fishscale structures[J]. International Journal of Solids and Structures,2010,47(17):2268-2275. doi: 10.1016/j.ijsolstr.2010.04.018 [9] FUNK N, VERA M, SZEWCIW L J, et al. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials[J]. ACS Applied Materials & Interfaces,2015,7(10):5972-5983. [10] WHITE Z, SHEN T, VOLK E M, et al. The role of surface properties on the penetration resistance of scaled skins[J]. Mechanics Research Communications,2019,98:1-8. doi: 10.1016/j.mechrescom.2019.05.001 [11] 刘鹏, 汪俊文, 朱德举. 草鱼鳞片的多级结构及力学性能[J]. 复合材料学报, 2016, 33(3):657-665.LIU P, WANG J W, ZHU D J. Hierarchical structure and mechenical properties of scales from grass carp[J]. Acta Materiae Compositae Sinica,2016,33(3):657-665(in Chinese). [12] LIU P, ZHU D, YAO Y, et al. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system[J]. Materials & Design,2016,99:201-210. [13] SHEN Z, HU D, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet[J]. Composite Structures,2019,213:209-219. doi: 10.1016/j.compstruct.2019.01.078 [14] HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International,2017,43(13):10368-10376. doi: 10.1016/j.ceramint.2017.05.071 [15] 刘鹏. 鳞片多级结构、力学性能及其仿生研究[D]. 长沙: 湖南大学, 2017.LIU Peng. The research on hierarchical structure mechanical behavior and biomimetic of fish scales[D]. Changsha: Hunan University, 2017(in Chinese). [16] FLORES-JOHNSON E A, SHEN L, GUIAMATSIA I, et al. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates[J]. Composites Science and Technology,2014,96:13-22. doi: 10.1016/j.compscitech.2014.03.001 [17] DHANDAPANI K. Experimental investigation and development of a constitutive model for ultra high molecular weight polyethylene materials[D]. Phoenix: Arizona State University, 2009. [18] AUDIBERT C, ANDREANI A S, LAINÉ É, et al. Mechanical characterization and damage mechanism of a new flax-Kevlar hybrid/epoxy composite[J]. Composite Structures,2018,195:126-135. [19] KRISHNAN K, SOCKALINGAM S, BANSAL S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact[J]. Composites Part B: Engineering,2010,41(8):583-593. doi: 10.1016/j.compositesb.2010.10.001 [20] 孙素杰, 赵宝荣, 王军, 等. 不同背板对陶瓷复合装甲抗弹性能影响的研究[J]. 兵器材料科学与工程, 2006, 29(2):70-72. doi: 10.3969/j.issn.1004-244X.2006.02.019SUN Sujie, ZHAO Baorong, WANG Jun, et al. Study on the penetration performance of ceramic armors with different backing plate[J]. Ordnance Material Science and Engineering,2006,29(2):70-72(in Chinese). doi: 10.3969/j.issn.1004-244X.2006.02.019 [21] 朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6):1411-1417.ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica,2020,37(6):1411-1417(in Chinese). [22] SHEN W, NIU Y, BYKANOVA L, et al. Characterizing the interaction among bullet, body armor, and human and surrogate targets[J]. Journal of Biomechanical Engineering,2010,132(12):121001. doi: 10.1115/1.4002699