留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC-超高分子量聚乙烯仿生柔性叠层结构防弹性能关键影响因素的仿真与试验

朱德举 彭恋

朱德举, 彭恋. SiC-超高分子量聚乙烯仿生柔性叠层结构防弹性能关键影响因素的仿真与试验[J]. 复合材料学报, 2020, 37(11): 2928-2940. doi: 10.13801/j.cnki.fhclxb.20200222.001
引用本文: 朱德举, 彭恋. SiC-超高分子量聚乙烯仿生柔性叠层结构防弹性能关键影响因素的仿真与试验[J]. 复合材料学报, 2020, 37(11): 2928-2940. doi: 10.13801/j.cnki.fhclxb.20200222.001
ZHU Deju, PENG Lian. Simulation and experiment of key influencing factors on ballistic performance of SiC-ultra-high molecular weight polyethylene biomimetic flexible laminated structure[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2928-2940. doi: 10.13801/j.cnki.fhclxb.20200222.001
Citation: ZHU Deju, PENG Lian. Simulation and experiment of key influencing factors on ballistic performance of SiC-ultra-high molecular weight polyethylene biomimetic flexible laminated structure[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2928-2940. doi: 10.13801/j.cnki.fhclxb.20200222.001

SiC-超高分子量聚乙烯仿生柔性叠层结构防弹性能关键影响因素的仿真与试验

doi: 10.13801/j.cnki.fhclxb.20200222.001
基金项目: 国防科技创新特区项目(19-H863-03-ZT-003-033-01);湖南省重点研发计划项目(2017GK2130);湖湘高层次人才聚集工程-创新人才(2018RS3057);长沙市科学计划项目(kq1907115)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生设计制备、高性能纤维织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析 E-mail:dzhu@hnu.edu.cn

  • 中图分类号: Q66;TB391

Simulation and experiment of key influencing factors on ballistic performance of SiC-ultra-high molecular weight polyethylene biomimetic flexible laminated structure

  • 摘要: 基于仿生学原理构建一种鱼鳞状的柔性叠层防护装具,仿生鳞片为中间厚边缘薄的双层复合结构,上下层分别为SiC陶瓷和超高分子量聚乙烯(UHMWPE)。采用ANSYS LS-DYNA软件的显式分析方法模拟了SiC-UHMWPE柔性叠层结构的防弹性能,主要从装具变形量、应力传递规律、能量耗散机制和子弹残余速度展开分析,重点研究了支撑点数量、曲率半径及覆盖角对防护性能的影响。鳞片单排与多排排列时背面垫料的凹陷深度仿真结果分别为32.52 mm和24.73 mm。本文依据NIJ标准Ⅲ级要求对柔性防护装具进行实弹测试。结果表明,试件在多发子弹侵彻后,出现局部两点支撑的不利情形。该成果将对新型柔性防护装具的设计和制备具有重要意义。

     

  • 图  1  SiC-超高分子量聚乙烯(UHMWPE)仿生柔性防护装具结构设计示意图:(a)真实鱼鳞片排列模式; (b)单个鱼鳞片; (c)鳞片截面; (d)仿生鳞片排列; (e)仿生复合鳞片截面; (f)仿生防护装具

    Figure  1.  Schematic diagram of structural design of SiC-ultra-high molecular weight polyethylene (UHMWPE) bionic flexible protection device: (a) Arrangement structure of the real fish scale; (b) Demonstration of an individual scale; (c) Cross-section of a scale; (d) Bionic scale arrangement pattern; (e) Cross-section of a bionic composite scale; (f) Bionic protection device

    θ1—Overlapping angle; L—Bionic scale diameter; R—Bionic scale radius; P—Contact point of bionic scale; r—Radius of arc of bionic scale

    图  2  防护装具旋转角示意图

    Figure  2.  Diagram of rotation angle of protection device

    α—Rotation angle

    图  3  SiC-UHMWPE柔性防护装具的有限元模型及网格划分示意图

    Figure  3.  Demonstration of finite element model and meshing of SiC-UHMWPE protection device

    图  4  SiC-UHMWPE柔性防护装具各模型随时间的动力响应曲线

    Figure  4.  Dynamic response curves of each model over time of SiC-UHMWPE protection device

    图  5  模型A和模型C靶鳞片UHMWPE层和子弹变形图: (a)靶鳞片UHMWPE层(t=50 μs); (b)子弹(t=20 μs)

    Figure  5.  Simulated deformation patterns of target scale with UHMWPE layer and bullet in model A and model C: (a) Target scale with UHMWPE layer (t=50 μs); (b) Bullet (t=20 μs)

    图  6  SiC-UHMWPE 各模型靶鳞片应力分布(t=50 μs): (a)模型A; (b)模型B; (c)模型C; (d)模型D

    Figure  6.  Von Mises stress distribution of target scale in each model of SiC-UHMWPE (t=50 μs): (a) Model A; (b) Model B; (c) Model C; (d) Model D

    图  7  SiC-UHMWPE 模型C和模型A的应力分布: (a) Kevlar层; (b)整个防护装具

    Figure  7.  Von Mises stress distribution of model C and model A for SiC-UHMWPE : (a) Kevlar layer; (b) Whole protection device

    图  8  SiC-UHMWPE 模型C与模型A的应力传递规律: (a) 模型C应力影响区域图; (b)子弹残余速度为0时模型C和模型A支撑鳞片等效应力图

    Figure  8.  Stress transfer patterns of model C and model A for SiC-UHMWPE: (a) Stress affected region in model C; (b) Von Mises stress contour of supporting scales in model C and model A when bullet’s residual velocity is zero

    图  9  SiC-UHMWPE 模型B和模型D直接支撑鳞片的应力分布

    Figure  9.  Effective stress distribution of direct supporting scale in model B and model D of SiC-UHMWPE

    图  10  SiC-UHMWPE模型E和模型F的有限元模型及仿真结果: (a)有限元模型; (b)凹陷深度

    Figure  10.  Finite element model and simulation results of model E and model F for SiC-UHMWPE: (a) Finite element model; (b) Backface signature

    图  11  试验样件及局部区域凹陷外貌: (a)试验前后防护装具X光照片; (b)试验和仿真的靶鳞片下背面垫料凹陷外貌

    Figure  11.  Test sample and concave appearance of local area: (a) X-ray pictures of armor sample before and after test; (b) Signature of backing material under target scale obtained by test and simulation

    图  12  模型E和模型F靶鳞片UHMWPE层位移-时间曲线

    Figure  12.  Displacement-time curves of UHMWPE layer of target scale in model E and model F

    表  1  有限元模型命名

    Table  1.   Finite element model naming

    MarkNameNamed annotation
    Model A a0c80 Flat model of single-row arrangement of scales with rotation angle α=0° and coverage angle θ1=80°.
    Model B a0c100 Flat model of single-row arrangement of scales with rotation angle α=0° and coverage angle θ1=100°.
    Model C 5x5a0c80 Flat model of 5 scales in the horizontal and vertical directions with the rotation angle α=0°, coverage angle θ1=80°.
    Model D a4c100 Curved model of single-row arrangement of scales with rotation angle α=4° and coverage angle θ1=100°.
    Model E a0c80gel Flat model of single-row arrangement of scales with rotation angle α=0°, coverage angle θ1=80°, and backing materials (gel) at bottom.
    Model F 5x5a0c80gel Flat model of 5 scales in the horizontal and vertical directions with rotation angle α=0°, coverage angle θ1=80°, and backing materials (gel) at bottom.
    下载: 导出CSV

    表  2  SiC陶瓷材料模型参数

    Table  2.   Material model parameters of SiC

    ρ/(g·cm−3)G/GPaABCMN
    3.1631270.960.3501.00.65
    EPSITensile strength /
    GPa
    Normalized fracture strengthHEL/GPaHEL pressure/GPaHEL vol. strainHEL strength/GPa
    1.00.370.814.5675.913.0
    D1D2K1/GPaK2/GPaK3/GPaBetaPSFAIL
    0.480.48204.785001.0
    Notes: ρ—Density; G—Shear modulus; A—Intact normalized strength parameter; B—Fractured normalized strength parameter; C—Strength parameter (for strain rate dependence); M—Fractured strength parameter (pressure exponent); N—Intact strength parameter (pressure exponent); EPSI—Reference strain rate; HEL—Hugoniot elastic limit; vol.—Volumetric; D1—Parameter for plastic strain to fracture; D2—Parameter for plastic strain to fracture (exponent); K1—First pressure coefficient (equivalent to the bulk modulus); K2—Second pressure coefficient; K3—Elastic constants; Beta—Fraction of elastic energy loss converted to hydrostatic energy; PSFAIL—Effective plastic strain at failure.
    下载: 导出CSV

    表  3  超高分子量聚乙烯(UHMWPE)材料特性参数

    Table  3.   Material model parameters of ultra-high molecular weight polyethylene(UHMWPE)

    ρ/(g·cm−3)P1P2P3P4P5P6
    0.975.7965.7966.125610.0253.588890.41368
    P7P8P9P10P11P12P13
    0.253.7092.88410.056.69390.05
    P14P15P16P17P18P19P20
    2.292.290.0250.264500.1851.3328
    P21P22P23P24P25P26P27
    0.282854.630.282854.630.282852.25−0.005
    Notes: P1, P2, P3—Moduli of elasticity in x, y and z directions; P4—Stretching poisson’s ratio in xy plane; P5—Shear modulus in xy plane; P6—Yield stress in xy plane; P7—Failure strain in xy direction; P8, P9—Linear buckling parameters; P10—Unloading modulus factor in xy plane; P11xy plane; P12—Unloading modulus in z direction; P13—Tensile modulus factor in z direction; P14, P15, P16—Shear moduli in yz, zx and xy planes; P17—Compression failure strain in z direction; P18—Tensile failure strain in z direction; P19—Local strain of area 1 in z direction; P20—Modulus of elasticity of area 1 in z direction; P21, P22C, P parameters of area 2; P23, P24C, P parameters of area 1; P25, P26C, P parameters in xy plane; P27—Parameter of strain rate.
    下载: 导出CSV

    表  4  凯夫拉(Kevlar)材料模型参数

    Table  4.   Material model parameters of Kevlar

    ρ/(g·cm−3)Ea/GPaEb/GPaGab1/GPaGab2/GPaGab3/GPaGbc/GPa
    0.8 32.69 32.69 0.004 0.042 0.349 0.349
    Gca/GPa Gamab1 Gamab2 Ea,crimpfac Eb,crimpfac εa,crimp εb,crimp
    0.349 0.25 0.35 0.06 0.20 0.007 0.0025
    Ea,softfac Eb,softfac Eunloadfac Ecompfac εa,max εb,max σpost/GPa
    −2.20 −5.60 1.5 0.005 0.023 0.02 0.01
    CCE PCE CSE dfac εmax εa,fail εb,fail
    0.005 40.00 0.005 0.30 0.035 0.20 0.20
    Notes: Ea, Eb—Moduli of elasticity in the longitudinal and transverse directions; Gab1, Gab2, Gab3—Shear moduli Gabi correspond to the slope of the ith segment; Gbc, Gca—Shear moduli in bc and ca directions; Gamab1, Gamab2—Shear strains Gamabi correspond to the slope of the ith segment; Ea,crimpfac, Eb,crimpfac—Factors for crimp region modulus of elasticity in longitudinal and transverse directions; εa,crimp, εb,crimp—Crimp strains in longitudinal and transverse directions; Ea,softfac, Eb,softfac—Factors for post-peak region modulus of elasticity in longitudinal and transverse directions; Eunloadfac, Ecompfac—Factors for unloading and compression zone modulus of elasticity; εa,max, εb,max—Strains at peak stress in longitudinal and transverse directions; σpost—Stress value in post-peak region at which nonlinear behavior begins; CCE, PCE, CSE—Cowper-Symonds factors; dfac—Damage factor; εmax—Erosion strain of element; εa,fail, εb,fail—Erosion strains in longitudinal and transverse directions.
    下载: 导出CSV

    表  5  弹壳及弹芯材料模型参数

    Table  5.   Material model parameters of bullet jacket and core

    Material parameterDensity/
    (g·cm−3)
    Young’s modulus/
    GPa
    Poisson’s ratioYield stress/
    GPa
    Tagent modulus/
    GPa
    Hardening parameterStrain rate parameter (SRC)Strain rate parameter (SRP)Failure strain
    Bullet jacket8.8581170.40.34500001.0
    Bullet core11.270170.40.0080.0150.20.63.03.0
    下载: 导出CSV
  • [1] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms: A review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures,2019,223:110966. doi: 10.1016/j.compstruct.2019.110966
    [2] CROUCH I G. Body armour: New materials, new systems[J]. Defence Technology,2019,15(3):241-253. doi: 10.1016/j.dt.2019.02.002
    [3] WHITE Z W, VERNEREY F J. Armours for soft bodies: How far can bioinspiration take us[J]. Bioinspiration & Biomimetics,2018,13(4):041004.
    [4] ZHU D, SZEWCIW L, VERNEREY F, et al. Puncture resistance of the scaled skin from striped bass: Collective mechanisms and inspiration for new flexible armor designs[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,24:30-40. doi: 10.1016/j.jmbbm.2013.04.011
    [5] ZHU D, ORTEGA C F, MOTAMEDI R, et al. Structure and mechanical performance of a “Modern” fish scale[J]. Advanced Engineering Materials,2012,14(4):185-194. doi: 10.1002/adem.201180057
    [6] YANG W, SHERMAN V R, GLUDOVATZ B, et al. Protective role of Arapaima gigas fish scales: Structure and mechanical behavior[J]. Acta Biomaterialia,2014,10(8):3599-3614. doi: 10.1016/j.actbio.2014.04.009
    [7] VERNEREY F J, BARTHELAT F. Skin and scales of teleost fish: Simple structure but high performance and multiple functions[J]. Journal of the Mechanics and Physics of Solids,2014,68:66-76. doi: 10.1016/j.jmps.2014.01.005
    [8] VERNEREY F J, BARTHELAT F. On the mechanics of fishscale structures[J]. International Journal of Solids and Structures,2010,47(17):2268-2275. doi: 10.1016/j.ijsolstr.2010.04.018
    [9] FUNK N, VERA M, SZEWCIW L J, et al. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials[J]. ACS Applied Materials & Interfaces,2015,7(10):5972-5983.
    [10] WHITE Z, SHEN T, VOLK E M, et al. The role of surface properties on the penetration resistance of scaled skins[J]. Mechanics Research Communications,2019,98:1-8. doi: 10.1016/j.mechrescom.2019.05.001
    [11] 刘鹏, 汪俊文, 朱德举. 草鱼鳞片的多级结构及力学性能[J]. 复合材料学报, 2016, 33(3):657-665.

    LIU P, WANG J W, ZHU D J. Hierarchical structure and mechenical properties of scales from grass carp[J]. Acta Materiae Compositae Sinica,2016,33(3):657-665(in Chinese).
    [12] LIU P, ZHU D, YAO Y, et al. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system[J]. Materials & Design,2016,99:201-210.
    [13] SHEN Z, HU D, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet[J]. Composite Structures,2019,213:209-219. doi: 10.1016/j.compstruct.2019.01.078
    [14] HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International,2017,43(13):10368-10376. doi: 10.1016/j.ceramint.2017.05.071
    [15] 刘鹏. 鳞片多级结构、力学性能及其仿生研究[D]. 长沙: 湖南大学, 2017.

    LIU Peng. The research on hierarchical structure mechanical behavior and biomimetic of fish scales[D]. Changsha: Hunan University, 2017(in Chinese).
    [16] FLORES-JOHNSON E A, SHEN L, GUIAMATSIA I, et al. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates[J]. Composites Science and Technology,2014,96:13-22. doi: 10.1016/j.compscitech.2014.03.001
    [17] DHANDAPANI K. Experimental investigation and development of a constitutive model for ultra high molecular weight polyethylene materials[D]. Phoenix: Arizona State University, 2009.
    [18] AUDIBERT C, ANDREANI A S, LAINÉ É, et al. Mechanical characterization and damage mechanism of a new flax-Kevlar hybrid/epoxy composite[J]. Composite Structures,2018,195:126-135.
    [19] KRISHNAN K, SOCKALINGAM S, BANSAL S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact[J]. Composites Part B: Engineering,2010,41(8):583-593. doi: 10.1016/j.compositesb.2010.10.001
    [20] 孙素杰, 赵宝荣, 王军, 等. 不同背板对陶瓷复合装甲抗弹性能影响的研究[J]. 兵器材料科学与工程, 2006, 29(2):70-72. doi: 10.3969/j.issn.1004-244X.2006.02.019

    SUN Sujie, ZHAO Baorong, WANG Jun, et al. Study on the penetration performance of ceramic armors with different backing plate[J]. Ordnance Material Science and Engineering,2006,29(2):70-72(in Chinese). doi: 10.3969/j.issn.1004-244X.2006.02.019
    [21] 朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6):1411-1417.

    ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica,2020,37(6):1411-1417(in Chinese).
    [22] SHEN W, NIU Y, BYKANOVA L, et al. Characterizing the interaction among bullet, body armor, and human and surrogate targets[J]. Journal of Biomechanical Engineering,2010,132(12):121001. doi: 10.1115/1.4002699
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  3461
  • HTML全文浏览量:  741
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 录用日期:  2020-02-15
  • 网络出版日期:  2020-02-22
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回