Tensile damage behavior and thermal exposure response of glass fiber/epoxy composite-aluminum alloy laminates with an open-hole
-
摘要: 采用试验和数值方法研究了含孔玻璃纤维/环氧树脂(GF/EP)复合材料-铝合金层板在不同热暴露温度下的拉伸剩余强度和损伤失效模式,揭示了层间损伤、纤维损伤及基体损伤的演化过程。结果表明:随着热暴露温度升高,含孔GF/EP复合材料-铝合金层板剩余强度不断下降,拉伸破坏呈现出明显的纤维断裂与层间分层混合失效模式。热暴露温度越高或开孔直径越大,GF/EP复合材料-铝合金层板的层间分层损伤区域越小。随着载荷的增大,沿加载方向的0°纤维和基体的损伤分别呈现出类似“漏斗”形和“花瓣”状的损伤演化形式,而层间损伤区域呈现出一对相对开孔对称的三角形损伤演化形式。基于GF/EP复合材料-铝合金层板的剩余强度和损伤失效模式的数值仿真与试验结果吻合较好。
-
关键词:
- 玻璃纤维/环氧树脂复合材料-铝合金层板 /
- 热暴露 /
- 拉伸性能 /
- 剩余强度 /
- 损伤模式
Abstract: The tensile residual strength and damage mode of glass fiber/epoxy (GF/EP) composite-aluminum alloy laminates with an open-hole subjected to different thermal exposure temperatures were studied based on experimental and numerical methods, revealing the evolution process of various failure including interlaminar damage, fiber damage and matrix damage. The results show that residual strength of GF/EP composite-aluminum alloy laminates with an open-hole gradually decreases as the thermal exposure temperature increases, followed by a mixed failure mode with fiber fracture and interlaminar delamination. The increasing temperature and open-hole diameter can both lead to a reduction of interlaminar damage area. As the load increases, 0° fiber along the loading direction shows a funnel-shaped damage evolution form, and petal shape for matrix damage. The interlaminar damage presents a pair of symmetrical triangles region with respect to the open-hole. The numerical results show good agreement with test ones based on residual strength and failure mode of GF/EP composite-aluminum alloy laminates. -
表 1 2024-T3铝合金材料性能
Table 1. Material properties of aluminum 2024-T3
Young’s modulus E/GPa Shear modulus G/GPa Poisson’s ratio ν Thickness t/mm 72 27 0.33 0.5 表 2 玻璃纤维/环氧树脂(GF/EP)预浸料材料性能
Table 2. Mechanical properties of glass fiber/epoxy (GF/EP) prepreg
Parameter Value Longitudinal stiffness E11/GPa 48.75a Transverse stiffness E22/GPa 14.33a Out-of-plane stiffness E33/GPa 14.33a Poisson’s ratio ν12, ν13 0.252a Poisson’s ratio ν23 0.32a Shear modulus G12, G13/MPa 5 100a Shear modulus G23/MPa 5 100a Longitudinal tensile strength XT/MPa 1 280b Longitudinal compressive strength XC/MPa 800b Transverse tensile strength YT/MPa 40b Transverse compressive strength YC/MPa 145b Shear strength S12, S23, S13/MPa 73b Out-of-plane tensile strength ZT/MPa 40b Note: Superscripts ‘a’ and ‘b’ represent the data from experimental tests and research literature[13], respectively. Failure mode Failure criterion Fiber tensile (${\varepsilon _{11}} > 0$) $F_{ {\rm{ft} }}^2 = {\left( {\dfrac{ { {\varepsilon _{11} } } }{ {X_{\rm{T} }^\varepsilon } } } \right)^2} + {\left( {\dfrac{ { {\varepsilon _{12} } } }{ {S_{12}^\varepsilon } } } \right)^2} + {\left( {\dfrac{ { {\varepsilon _{13} } } }{ {S_{13}^\varepsilon } } } \right)^2}$ Fiber compression (${\varepsilon _{11}} \leqslant 0$) $F_{{\rm{fc}}}^2 = {\left( {\dfrac{{{\varepsilon _{11}}}}{{X_{\rm{C}}^{11}}}} \right)^2}$ Matrix tensile ($({\varepsilon _{22}} + {\varepsilon _{33}}) \geqslant 0$) $F_{{\rm{mt}}}^2 = {\left( {\dfrac{{{\varepsilon _{11}} + {\varepsilon _{33}}}}{{Y_{\rm{T}}^\varepsilon }}} \right)^2} + \left( {\dfrac{1}{{S{{_{23}^\varepsilon }^2}}}} \right)\left( {{\varepsilon _{23}}^2 - \dfrac{{{E_{22}}{E_{33}}}}{{{G_{23}}^2}}{\varepsilon _{22}}{\varepsilon _{33}}} \right) + {\left( {\dfrac{{{\varepsilon _{12}}}}{{S_{12}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{13}}}}{{S_{13}^\varepsilon }}} \right)^2}$ Matrix compression ($({\varepsilon _{22}} + {\varepsilon _{33}}) < 0$) $\begin{array}{l} F_{ {\rm{mc} } }^2 = {\left( {\dfrac{ { {E_{22} }{\varepsilon _{22} } + {E_{33} }{\varepsilon _{33} } } }{ {2{G_{12} }S_{12}^\varepsilon } } } \right)^2} + \left( {\dfrac{ { {\varepsilon _{22} } + {\varepsilon _{33} } } }{ {Y{ {_{\rm{C} }^\varepsilon }^2} } } } \right)\left[ { { {\left( {\dfrac{ { {E_{22} }Y_{\rm{C}}^\varepsilon } }{ {2{G_{12} }S_{12}^\varepsilon } } } \right)}^2} - 1} \right] +\\ \quad\quad\dfrac{1}{ {S{ {_{23}^\varepsilon }^2} } }\left( { {\varepsilon _{23} }^2 - \dfrac{ { {E_{22} }{E_{33} } } }{ { {G_{23} }^2} }{\varepsilon _{22} }{\varepsilon _{33} } } \right) + {\left( {\dfrac{ { {\varepsilon _{12} } } }{ {S_{12}^\varepsilon } } } \right)^2} + {\left( {\dfrac{ { {\varepsilon _{13} } } }{ {S_{13}^\varepsilon } } } \right)^2} \\ \end{array}$ Delamination failure (${\varepsilon _{33}} \geqslant 0$) $F_{{\rm{ld}}}^2 = {\left( {\dfrac{{{\varepsilon _{33}}}}{{Z_{\rm{T}}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{13}}}}{{S_{13}^\varepsilon }}} \right)^2} + {\left( {\dfrac{{{\varepsilon _{23}}}}{{S_{23}^\varepsilon }}} \right)^2}$ Notes: $X_{\rm{T}}^\varepsilon $—Longitudinal tensile strength strain; $X_{\rm{C}}^\varepsilon $—Longitudinal compressive strength strain; $Y_{\rm{T}}^\varepsilon $—Transverse tensile strength strain; $Y_{\rm{C}}^\varepsilon $—Transverse compressive strength strain; $S_{12}^\varepsilon $, $S_{13}^\varepsilon $, $S_{23}^\varepsilon $—Shear strain in the corresponding directions; $Z_{\rm{T}}^\varepsilon $—Out-of-plane tensile strength strain. Elastic property Damage initiation Damage evolution E/GPa G/GPa Nmax/MPa Smax/MPa Tmax/MPa GⅠC/(J·m−2) GⅡC/(J·m−2) GⅢC/(J·m−2) 2 0.75 65 38 38 2 4 4 Notes: E—Elastic modulus; G—Shear modulus; Nmax, Smax, Tmax—Traction in tension, shear 1 and shear 2, respectively; GⅠC, GⅡC, GⅢC—Fracture energy mode Ⅰ, Ⅱ and Ⅲ, respectively. Yield stress/MPa 300 320 340 355 375 390 410 430 450 470 484 Plastic strain/% 0 0.16 0.047 0.119 0.449 1.036 2.13 3.439 5.133 8.0 14.71 表 6 含孔GF/EP复合材料-铝合金层板的损伤演化
Table 6. Damage evolution of GF/EP composite-aluminum alloy laminates with an open-hole
Open-hole diameter D Fiber and matrix tensile damage evolution 2 mm Increment step 144 722 153 859 164 658 182 922 4 mm Increment step 115 583 152 266 157 353 170 045 6 mm Increment step 112 855 132 492 144 664 151 741 8 mm Increment step 71 256 83 994 95 396 127 229 10 mm Increment step 56 025 64 276 75 626 115 428 -
[1] NOWAK T. Elastic-plastic behavior and failure analysis of selected fiber metal laminates[J]. Composite Structures,2017,183:450-456. [2] PATIL N A, MULIK S S, WANGIKAR K S, et al. Characterization of glass laminate aluminium reinforced epoxy-A review[J]. Procedia Manufacturing,2018,20:554-562. doi: 10.1016/j.promfg.2018.02.083 [3] 吴素君, 解晓伟, 晋会锦, 等. 纤维金属层板力学性能的研究现状[J]. 复合材料学报, 2018, 35(4):733-747.WU S J, XIE X W, JIN H J, et al. Mechanical properties of fibre metal laminates: A review[J]. Acta Materiae Compositae Sinica,2018,35(4):733-747(in Chinese). [4] VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures[J]. Journal of Materials Processing Technology,2000,103(1):1-5. doi: 10.1016/S0924-0136(00)00411-8 [5] SINMAZÇELIK T, AVCU E, BORA M Ö, et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design,2011,32(7):3671-3685. [6] 李尧. 飞机温度环境适应性要求分析和确定技术探讨[J]. 装备环境工程, 2008, 5(6):60-64. doi: 10.3969/j.issn.1672-9242.2008.06.013LI Y. Analysis and confirmation techniques for requirements of temperature environmental worthiness of aircraft[J]. Equipment Environmental Engineering,2008,5(6):60-64(in Chinese). doi: 10.3969/j.issn.1672-9242.2008.06.013 [7] RANS C D, ALDERLIESTEN R C, BENEDICTUS R. Predicting the influence of temperature on fatigue crack propagation in fibremetal laminates[J]. Engineering Fracture Mechanics,2011,78(10):2193-2201. doi: 10.1016/j.engfracmech.2011.04.005 [8] JAKUBCZAK P, BIENIAS J, SUROWSKA B. Interlaminar shear strength of fibre metal laminates after thermal cycles[J]. Composite Structures,2018,206:876-887. doi: 10.1016/j.compstruct.2018.09.001 [9] MAJERSKI K, SUROWSKA B, BIENIAS J. The comparison of effects of hygrothermal conditioning on mechanical properties of fibre metal laminates and fibre reinforced polymers[J]. Composites Part B: Engineering,2018,142:108-116. doi: 10.1016/j.compositesb.2018.01.002 [10] 李晓峰, 曲贵民, 李博儒. 圆孔对GLARE层合板抗冲击性能的影响[J]. 复合材料学报, 2016, 33(9):2104-2114.LI X F, QU G M, LI B R. Effect of circular hole on impact resistance of GLARE laminates[J]. Acta Materiae Compositae Sinica,2016,33(9):2104-2114(in Chinese). [11] 翟豹, 王树彬, 张博明, 等. 阳极氧化工艺对纤维-铝合金层板力学性能的影响[J]. 复合材料学报, 2013, 30(3):154-159.ZHAI B, WANG S B, ZHANG B M, et al. Effect of anodizing process on the mechanical properties of glass fiber reinforced aluminum laminates[J]. Acta Materiae Compositae Sinica,2013,30(3):154-159(in Chinese). [12] 陈凯, 胡玉冰, 刘成. 温度对Ti/Cf/PMR超混杂层板力学性能的影响研究[J]. 机械制造与自动化, 2017, 46(6):31-34, 74.CHEN K, HU Y B, LIU C. Influence of temperature on mechanical properties of Ti/Cf/PMR hybrid laminates[J]. Machine Building & Automation,2017,46(6):31-34, 74(in Chinese). [13] KADDOUR A S, HINTON M J. Input data for test cases used in benchmarking triaxial failure theories of composites[J]. Journal of Composite Materials,2012,46(19-20):2295-2312. doi: 10.1177/0021998312449886 [14] 中华人民共和国航空航天工业部. 结构胶接铝合金磷酸阳极化工艺规范: HB/Z 197—1991[S]. 北京: 航空航天工业部, 1991.Aerospace Industry of the People’s Republic of China. Phosphoric acid anodizing process specifications of structural bonding of aluminum alloy: HB/Z 197—1991[S]. Beijing: Aerospace Industry, 1991(in Chinese). [15] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites: Determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [16] BOTELHO E C, ALMEIDA R S, PARDINI L C, et al. Elastic properties of hygrothermally conditioned glare laminate[J]. International Journal of Engineering Science,2007,45(1):163-172. doi: 10.1016/j.ijengsci.2006.08.017 [17] HASZIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664 [18] HUANG C H, LEE Y J. Experiments and simulation of the static contact crush of composite laminated plates[J]. Composite Structures,2003,61(3):265-270. doi: 10.1016/S0263-8223(02)00047-8 [19] XIAO J R, GAMA B A, GILLESPIE J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading[J]. Composite Structures,2007,78(2):182-196. doi: 10.1016/j.compstruct.2005.09.001 [20] FRIZZELL R M, MCCARTHY C T, MCCARTHY M A. Predicting the effects of geometry on the behaviour of fibre metal laminate joints[J]. Composite Structures,2011,93(7):1877-1889. doi: 10.1016/j.compstruct.2011.01.018 [21] LINDE P, BOER H D. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73(2):221-228. doi: 10.1016/j.compstruct.2005.11.062 [22] VO T P, GUAN Z W, CANTWELL W J, et al. Low-impulse blast behaviour of fibre-metal laminates[J]. Composite Structures,2012,94(3):954-965. doi: 10.1016/j.compstruct.2011.10.027 [23] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X [24] SUGIMAN S, CROCOMBE A D, KATNAM K B. Investigating the static response of hybrid fibre-metal laminate doublers loaded in tension[J]. Composite Part B: Engineering,2014,42(7):1867-1884. [25] CHEN J F, MOROZOV E V, SHANKAR K. Progressive failure analysis of perforated aluminium/CFRP fibre metal laminates using a combined elastoplastic damage model and including delamination effects[J]. Composite Structures,2014,114:64-79. doi: 10.1016/j.compstruct.2014.03.046 [26] LIN Y, HUANG Y, HUANG T, et al. Open-hole tensile behaviour and failure prediction of carbon fibre reinforced aluminium laminates[J]. Polymer Composites,2018,39(11):4123-4138.