留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力的影响

王遥 曹东风 胡海晓 冀运东 宋培豪 李书欣

王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力的影响[J]. 复合材料学报, 2020, 37(11): 2833-2843. doi: 10.13801/j.cnki.fhclxb.20200121.004
引用本文: 王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力的影响[J]. 复合材料学报, 2020, 37(11): 2833-2843. doi: 10.13801/j.cnki.fhclxb.20200121.004
WANG Yao, CAO Dongfeng, HU Haixiao, et al. Effect of single-bolt repair on compression capability of carbon/epoxy composite laminates containing impact damage[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2833-2843. doi: 10.13801/j.cnki.fhclxb.20200121.004
Citation: WANG Yao, CAO Dongfeng, HU Haixiao, et al. Effect of single-bolt repair on compression capability of carbon/epoxy composite laminates containing impact damage[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2833-2843. doi: 10.13801/j.cnki.fhclxb.20200121.004

单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力的影响

doi: 10.13801/j.cnki.fhclxb.20200121.004
基金项目: 中国博士后科学基金(2018M632933);中央高校基本科研业务费专项资金(2018III066GX);湖北省自然科学基金(2017cFc809);湖北省对外科技合作项目(2013BHE008)
详细信息
    通讯作者:

    曹东风,博士,副研究员,研究方向为先进复合材料计算力学 E-mail:cao_dongf@whut.edu.cn

    胡海晓,博士,副教授,研究方向为复合材料材料-工艺-结构一体化应用 E-mail:yiming9008@126.com

  • 中图分类号: TB330.1

Effect of single-bolt repair on compression capability of carbon/epoxy composite laminates containing impact damage

  • 摘要: 开展了单钉修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的试验研究。测试了三种不同能量冲击后碳纤维/环氧树脂复合材料层合板的压缩承载能力及失效模式,测定了单螺栓对碳纤维/环氧树脂复合材料层合板压缩承载能力的修复效率,并借助数字图像相关技术(DIC)表征手段揭示了单螺栓修复对含冲击损伤结构失效行为的影响。结果表明:冲击后碳纤维/环氧树脂复合材料层合板的压缩承载能力随着冲击能量的增加而降低,冲击损伤破坏了碳纤维/环氧树脂复合材料层合板结构的对称性,并导致结构在加载初期呈非对称的局部屈曲变形特征,局部屈曲诱发并加剧分层损伤扩展;单螺栓修复能有效恢复结构的整体对称性,在一定程度上抑制含冲击损伤碳纤维/环氧树脂复合材料层合板的局部屈曲,达到可观的修复效率。该研究为复合材料紧固件修理方案的制订及修理损伤容限的定义提供一定的指导意义。

     

  • 图  1  实验方案流程

    Figure  1.  Flow chart of experiment program

    图  2  冲击后压缩夹具

    Figure  2.  Fixture for compression after impact

    图  3  冲击后压缩试验和数字图像相关技术(DIC)设备

    Figure  3.  Compression after impact test and digital image correlation(DIC) equipment

    图  4  紧固件几何尺寸

    Figure  4.  Dimensions of fastener

    图  5  15 J能量冲击后碳纤维/环氧树脂复合材料层合板正反表面不可恢复变形

    Figure  5.  Unrecoverable deformation of carbon fiber/epoxy composite laminates after impact of 15 J

    图  6  碳纤维/环氧树脂复合材料层合板冲击后的C扫描图像

    Figure  6.  C-scan images of carbon fiber/epoxy composite laminates after impact

    thk—Damage position occurred in thickness direction, identifying distance between damage and upper surface

    图  7  冲击前后碳纤维/环氧树脂复合材料层合板断面光学显微图像(工况D-15)

    Figure  7.  Optical microscopic images of cross-section of carbon fiber/epoxy composite laminates before and after impact (Case of D-15)

    图  8  不同能量冲击后碳纤维/环氧树脂复合材料层合板压缩承载力

    Figure  8.  Compression bearing capacity of carbon fiber/epoxy composite laminates after impact with different energies

    图  9  碳纤维/环氧树脂复合材料层合板的位移-载荷曲线(工况D-15)

    Figure  9.  Load-displacement curve of carbon fiber/epoxy composite laminates (Case D-15)

    图  10  碳纤维/环氧树脂复合材料层合板冲击正面的DIC云图(工况D-15)

    Figure  10.  DIC images of impact surface of carbon fiber/epoxy composite laminates (Case D-15)

    图  11  碳纤维/环氧树脂复合材料层合板冲击反面的DIC云图(工况D-15)

    Figure  11.  DIC images of back surface of carbon fiber/epoxy composite laminates (Case D-15)

    图  12  压缩过程中碳纤维/环氧树脂复合材料层合板冲击正反面的变形示意图(工况D-15)

    Figure  12.  Deformation schematic of impact and back surface of carbon fiber/epoxy composite laminates during compression (Case D-15)

    图  13  工况D-15的碳纤维/环氧树脂复合材料层合板最终失效模式

    Figure  13.  Final failure mode of carbon fiber/epoxy composite laminates under case D-15

    图  14  单钉螺栓修补碳纤维/环氧树脂复合材料层合板

    Figure  14.  Single bolt-repaired carbon fiber/epoxy composite laminate

    图  15  不同能量冲击的未修复和单钉螺栓修复的碳纤维/环氧树脂复合材料层合板压缩承载能力

    Figure  15.  Compression bearing capacity of carbon fiber/epoxy composite laminates with and without single bolt-repaired after impact with different energies

    图  16  工况R-15的碳纤维/环氧树脂复合材料层合板载荷-位移曲线

    Figure  16.  Load-displacement curve of carbon fiber/epoxy composite laminates under case R-15

    图  17  碳纤维/环氧树脂复合材料层合板冲击正面的DIC云图(工况R-15)

    Figure  17.  DIC images of impact surface of carbon fiber/epoxy composite laminates (Case R-15)

    图  18  碳纤维/环氧树脂复合材料层合板冲击背面的DIC云图(工况R-15)

    Figure  18.  DIC images of back surface of carbon fiber/epoxy composite laminates (Case R-15)

    图  19  压缩过程中碳纤维/环氧树脂复合材料层合板冲击正反面的变形示意图(工况R-15)

    Figure  19.  Deformation schematic of impact and back surface of carbon fiber/epoxy composite laminates during compression (Case R-15)

    图  20  工况R-15的碳纤维/环氧树脂复合材料层合板最终失效模式

    Figure  20.  Final failure mode of carbon fiber/epoxy composite laminates under case R-15

    图  21  损伤和单钉修复对碳纤维/环氧树脂复合材料层合板压缩刚度的影响

    Figure  21.  Effect of damage and bolt repair on compression stiffness of carbon fiber/epoxy composite laminates

    表  1  试验工况设置

    Table  1.   Cases of test

    SetImpact energy/JFastener
    I
    D-9 9 NO
    D-15 15 NO
    D-30 30 NO
    R-9 9 YES
    R-15 15 YES
    R-30 30 YES
    Notes: I—Intact specimens; D—Damaged specimens; R—Repaired specimens.
    下载: 导出CSV
  • [1] 沈真. 碳纤维复合材料在飞机结构中的应用[J]. 高科技纤维与应用, 2010, 35(4):1-4, 24. doi: 10.3969/j.issn.1007-9815.2010.04.001

    SHEN Zhen. Application of carbon fiber composites in aircraft structures[J]. Hi-Tech Fiber & Application,2010,35(4):1-4, 24(in Chinese). doi: 10.3969/j.issn.1007-9815.2010.04.001
    [2] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [3] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Composite Sinica,2016,33(7):1327-1338(in Chinese).
    [4] Federal Aviation Administration. Change 1 to composite aircraft structure: AC 20-107B[S]. Washington: Federal Aviation Administration, 2010.
    [5] ABISSET E, DAGHIA F, SUN X C, et al. Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests Part 1: Experiments[J]. Composite Structures,2016,136:712-726. doi: 10.1016/j.compstruct.2015.09.061
    [6] GLISZCZYNSKI A, KUBIAK T, WAWER K. Barely visible impact damages of GFRP laminate profiles: An experimental study[J]. Composites Part B: Engineering,2019,158:10-17. doi: 10.1016/j.compositesb.2018.09.044
    [7] SUN X C, HALLETT S R. Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations[J]. International Journal of Impact Engineering,2017,109:178-195. doi: 10.1016/j.ijimpeng.2017.06.008
    [8] TALREJA R, PHAN N. Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage[J]. Composite Structures,2019,219:1-7.
    [9] ABIR M R, TAY T E, RIDHA M, et al. On the relationship between failure mechanism and compression after impact (CAI) strength in composites[J]. Composite Structures,2017,182:242-250. doi: 10.1016/j.compstruct.2017.09.038
    [10] LIU H, FALZON B G, TAN W. Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2018,105:189-202. doi: 10.1016/j.compositesa.2017.11.021
    [11] ROZYLO P, DEBSKI H, KUBIAK T. A model of low-velocity impact damage of composite plates subjected to compression-after-impact (CAI) testing[J]. Composite Structures,2017,181:158-170. doi: 10.1016/j.compstruct.2017.08.097
    [12] AMARO A M, REIS P N B, MOURA M F S F D, et al. Buckling analysis of laminated composite plates submitted to compression after impact[J]. Fibers and Polymers,2014,15(3):560-565. doi: 10.1007/s12221-014-0560-x
    [13] BULL D J, SPEARING S M, SINCLAIR I. Observations of damage development from compression-after-impact experiments using ex situ micro-focus computed tomography[J]. Composites Science and Technology,2014,97:106-114. doi: 10.1016/j.compscitech.2014.04.008
    [14] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2018,104:41-59.
    [15] WHITTINGHAM B, BAKER A A, HARMAN A, et al. Micrographic studies on adhesively bonded scarf repairs to thick composite aircraft structure[J]. Composites Part A: Applied Science and Manufacturing,2009,40(9):1419-1432.
    [16] CAMPILHO R D S G, MOURA M F S F, PINTO A M G, et al. Modelling the tensile fracture behavior of CFRP scarf repairs[J]. Composites Part B: Engineering,2009,40(2):149-157. doi: 10.1016/j.compositesb.2008.10.008
    [17] GUNNION A J, HERSZBERG I. Parametric study of scarf joints in composite structures[J]. Composite Structures,2006,75(1-4):364-376. doi: 10.1016/j.compstruct.2006.04.053
    [18] HAUTIER M, LÉVÊQUE D, HUCHETTE C, et al. Investigation of composite repair method by liquid resin infiltration[J]. Plastics, Rubber and Composites,2010,39(3-5):200-207. doi: 10.1179/174328910X12647080902411
    [19] WU K W, LEE C L, CHANG Y C, et al. Compressive strength of delaminated and repaired composite plates[J]. Materials Chemistry and Physics,1996,43(2):173-177. doi: 10.1016/0254-0584(95)01633-6
    [20] GARCIA R, LINKE M, NEBLINGER S, et al. An infiltration strategy to repair carbon fiber reinforced polymer (CFRP) parts[J]. Procedia Manufacturing,2017,13:380-387. doi: 10.1016/j.promfg.2017.09.024
    [21] PARK S S, CHOE H S, KWAK B S, et al. Micro-bolt repair for delaminated composite plate under compression[J]. Composite Structures,2018,192:245-254. doi: 10.1016/j.compstruct.2018.02.087
    [22] KWAK B S, LEE G E, KANG G S, et al. An investigation of repair methods for delaminated composite laminate under flexural load[J]. Composite Structures,2019,215:249-257. doi: 10.1016/j.compstruct.2019.02.037
    [23] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136M—15[S]. West Conshohocken: ASTM International, 2015.
    [24] ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137M—17[S]. West Conshohocken: ASTM International, 2017.
    [25] CHESTER R J, CLARK G. Modelling of impact damage features in graphite/epoxy laminates[S]//MASTERS J E. Damage detection in composite materials. West Conshohocken: ASTM International, 1992: 200-212.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  1681
  • HTML全文浏览量:  579
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 录用日期:  2020-01-09
  • 网络出版日期:  2020-01-21
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回