Effect of single-bolt repair on compression capability of carbon/epoxy composite laminates containing impact damage
-
摘要: 开展了单钉修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的试验研究。测试了三种不同能量冲击后碳纤维/环氧树脂复合材料层合板的压缩承载能力及失效模式,测定了单螺栓对碳纤维/环氧树脂复合材料层合板压缩承载能力的修复效率,并借助数字图像相关技术(DIC)表征手段揭示了单螺栓修复对含冲击损伤结构失效行为的影响。结果表明:冲击后碳纤维/环氧树脂复合材料层合板的压缩承载能力随着冲击能量的增加而降低,冲击损伤破坏了碳纤维/环氧树脂复合材料层合板结构的对称性,并导致结构在加载初期呈非对称的局部屈曲变形特征,局部屈曲诱发并加剧分层损伤扩展;单螺栓修复能有效恢复结构的整体对称性,在一定程度上抑制含冲击损伤碳纤维/环氧树脂复合材料层合板的局部屈曲,达到可观的修复效率。该研究为复合材料紧固件修理方案的制订及修理损伤容限的定义提供一定的指导意义。Abstract: The efficiency of single-bolt repairing on the compression capacity of carbon/epoxy composite laminates containing impact damages was experimentally reported. The compression bearing capacity and failure modes of carbon/epoxy composite laminates with impact damage under three different level energies were studied. Simultaneously the efficiency of single bolt repairing on the compression capacity of the above-mentioned impacted carbon/epoxy composite laminates was investigated together with failure behavior based on digital image correlation (DIC) technology. The results show that the compressive load capacity of the laminated plate decreases with the increase of the impact energy, and the impact damage destroys the stiffness symmetry of the carbon/epoxy composite laminates, resulting in asymmetric local buckling deformation from the initial stage of loading. Bolt repairing can restore the overall symmetry of the carbon/epoxy composite laminates, inhibit the local buckling of the delaminated area to a certain extent, and improve considerable repair efficiency. This work is helpful for the decision of fasten repairing strategy and the definition of repair damage tolerance for composites structure.
-
Key words:
- composite /
- compression after impact /
- bolt repair /
- delamination /
- local buckling
-
表 1 试验工况设置
Table 1. Cases of test
Set Impact energy/J Fastener I — — D-9 9 NO D-15 15 NO D-30 30 NO R-9 9 YES R-15 15 YES R-30 30 YES Notes: I—Intact specimens; D—Damaged specimens; R—Repaired specimens. -
[1] 沈真. 碳纤维复合材料在飞机结构中的应用[J]. 高科技纤维与应用, 2010, 35(4):1-4, 24. doi: 10.3969/j.issn.1007-9815.2010.04.001SHEN Zhen. Application of carbon fiber composites in aircraft structures[J]. Hi-Tech Fiber & Application,2010,35(4):1-4, 24(in Chinese). doi: 10.3969/j.issn.1007-9815.2010.04.001 [2] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese). [3] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Composite Sinica,2016,33(7):1327-1338(in Chinese). [4] Federal Aviation Administration. Change 1 to composite aircraft structure: AC 20-107B[S]. Washington: Federal Aviation Administration, 2010. [5] ABISSET E, DAGHIA F, SUN X C, et al. Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests Part 1: Experiments[J]. Composite Structures,2016,136:712-726. doi: 10.1016/j.compstruct.2015.09.061 [6] GLISZCZYNSKI A, KUBIAK T, WAWER K. Barely visible impact damages of GFRP laminate profiles: An experimental study[J]. Composites Part B: Engineering,2019,158:10-17. doi: 10.1016/j.compositesb.2018.09.044 [7] SUN X C, HALLETT S R. Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations[J]. International Journal of Impact Engineering,2017,109:178-195. doi: 10.1016/j.ijimpeng.2017.06.008 [8] TALREJA R, PHAN N. Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage[J]. Composite Structures,2019,219:1-7. [9] ABIR M R, TAY T E, RIDHA M, et al. On the relationship between failure mechanism and compression after impact (CAI) strength in composites[J]. Composite Structures,2017,182:242-250. doi: 10.1016/j.compstruct.2017.09.038 [10] LIU H, FALZON B G, TAN W. Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2018,105:189-202. doi: 10.1016/j.compositesa.2017.11.021 [11] ROZYLO P, DEBSKI H, KUBIAK T. A model of low-velocity impact damage of composite plates subjected to compression-after-impact (CAI) testing[J]. Composite Structures,2017,181:158-170. doi: 10.1016/j.compstruct.2017.08.097 [12] AMARO A M, REIS P N B, MOURA M F S F D, et al. Buckling analysis of laminated composite plates submitted to compression after impact[J]. Fibers and Polymers,2014,15(3):560-565. doi: 10.1007/s12221-014-0560-x [13] BULL D J, SPEARING S M, SINCLAIR I. Observations of damage development from compression-after-impact experiments using ex situ micro-focus computed tomography[J]. Composites Science and Technology,2014,97:106-114. doi: 10.1016/j.compscitech.2014.04.008 [14] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2018,104:41-59. [15] WHITTINGHAM B, BAKER A A, HARMAN A, et al. Micrographic studies on adhesively bonded scarf repairs to thick composite aircraft structure[J]. Composites Part A: Applied Science and Manufacturing,2009,40(9):1419-1432. [16] CAMPILHO R D S G, MOURA M F S F, PINTO A M G, et al. Modelling the tensile fracture behavior of CFRP scarf repairs[J]. Composites Part B: Engineering,2009,40(2):149-157. doi: 10.1016/j.compositesb.2008.10.008 [17] GUNNION A J, HERSZBERG I. Parametric study of scarf joints in composite structures[J]. Composite Structures,2006,75(1-4):364-376. doi: 10.1016/j.compstruct.2006.04.053 [18] HAUTIER M, LÉVÊQUE D, HUCHETTE C, et al. Investigation of composite repair method by liquid resin infiltration[J]. Plastics, Rubber and Composites,2010,39(3-5):200-207. doi: 10.1179/174328910X12647080902411 [19] WU K W, LEE C L, CHANG Y C, et al. Compressive strength of delaminated and repaired composite plates[J]. Materials Chemistry and Physics,1996,43(2):173-177. doi: 10.1016/0254-0584(95)01633-6 [20] GARCIA R, LINKE M, NEBLINGER S, et al. An infiltration strategy to repair carbon fiber reinforced polymer (CFRP) parts[J]. Procedia Manufacturing,2017,13:380-387. doi: 10.1016/j.promfg.2017.09.024 [21] PARK S S, CHOE H S, KWAK B S, et al. Micro-bolt repair for delaminated composite plate under compression[J]. Composite Structures,2018,192:245-254. doi: 10.1016/j.compstruct.2018.02.087 [22] KWAK B S, LEE G E, KANG G S, et al. An investigation of repair methods for delaminated composite laminate under flexural load[J]. Composite Structures,2019,215:249-257. doi: 10.1016/j.compstruct.2019.02.037 [23] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136M—15[S]. West Conshohocken: ASTM International, 2015. [24] ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137M—17[S]. West Conshohocken: ASTM International, 2017. [25] CHESTER R J, CLARK G. Modelling of impact damage features in graphite/epoxy laminates[S]//MASTERS J E. Damage detection in composite materials. West Conshohocken: ASTM International, 1992: 200-212.