留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响

曾伟 丁一宁

曾伟, 丁一宁. 荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响[J]. 复合材料学报, 2020, 37(9): 2314-2323. doi: 10.13801/j.cnki.fhclxb.20191213.001
引用本文: 曾伟, 丁一宁. 荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响[J]. 复合材料学报, 2020, 37(9): 2314-2323. doi: 10.13801/j.cnki.fhclxb.20191213.001
ZENG Wei, DING Yining. Effects of macro fibers on crack permeability evolution of concrete under loading[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2314-2323. doi: 10.13801/j.cnki.fhclxb.20191213.001
Citation: ZENG Wei, DING Yining. Effects of macro fibers on crack permeability evolution of concrete under loading[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2314-2323. doi: 10.13801/j.cnki.fhclxb.20191213.001

荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响

doi: 10.13801/j.cnki.fhclxb.20191213.001
基金项目: 国家自然科学基金(51578109)
详细信息
    通讯作者:

    丁一宁,博士,教授,博士生导师,研究方向为高性能混凝土 E-mail:ynding@hotmail.com

  • 中图分类号: TU528.572

Effects of macro fibers on crack permeability evolution of concrete under loading

  • 摘要: 为研究荷载作用下结构型钢纤维和结构型聚丙烯纤维对混凝土裂缝渗透率演化的影响,通过劈拉试验引入混凝土裂缝,同时利用真空渗水试验装置对不同裂缝宽度下混凝土裂缝渗透率进行实时测量和分析。借助激光扫描仪对混凝土裂缝表面形态进行信息采集和形态重构。对比分析了结构型钢纤维、结构型聚丙烯纤维及混杂纤维(包括结构型钢纤维和结构型聚丙烯纤维)对混凝土裂缝渗透率及裂缝表面形态的影响。研究表明:结构型纤维可通过增大裂缝表面粗糙程度降低混凝土裂缝渗透率,且随着纤维掺量的增高,混凝土裂缝渗透率随之减小。对比单掺纤维混凝土,混杂纤维混凝土具有更粗糙的裂缝表面,且展现出更显著的裂缝抗渗性能;随着裂缝的扩展,混凝土裂缝渗透率更接近于泊肃叶渗流模型;相比于泊肃叶渗流模型修正系数ξ,本文所用渗透率参数α更适合量化结构型纤维对混凝土裂缝渗透率的影响。

     

  • 图  1  结构型钢纤维(SF)和结构型聚丙烯纤维(PP)的形状

    Figure  1.  Geometry of macro steel fiber(SF) and macro polypropylene fiber(PP)

    图  2  混凝土劈拉试验

    Figure  2.  Splitting tensile test of concrete

    LVDT—Linear variable differential transformer

    图  3  混凝土裂缝面积测量

    Figure  3.  Measuring crack area of concrete

    图  4  混凝土真空渗水试验

    Figure  4.  Vacuum permeability test of concrete

    图  5  混凝土有效裂缝宽度计算方法[18]

    Figure  5.  Computational method of effective crack width of concrete[18]

    图  6  混凝土试件裂缝中心扩展宽度(DCOD)与有效裂缝面积(Afeff)的统计关系

    Figure  6.  Statistical relationship between crack opening displacement(DCOD) and effective crack area( Afeff) of a representative concrete sample

    图  7  连续位移加载与持载下混凝土裂缝渗透率的对比

    Figure  7.  Comparison of crack permeability of concrete taken between continuous displacement loading and constant load

    图  8  激光扫描仪

    Figure  8.  Experimental set-up of the laser scanning equipment

    图  9  扫描线路

    Figure  9.  Scanning path

    图  10  混凝土裂缝表面形态示意图

    Figure  10.  Schematic view of crack surface topography of concrete

    图  11  NC、SF/NC、PP/NC和SF-PP/NC缝渗透率随有效裂缝宽度变化关系

    Figure  11.  Relationship between crack permeability and the effective crack width of NC, SF/NC, PP/NC and SF-PP/NC

    图  12  NC、SF/NC、PP/NC和SF-PP/NC修正系数ξ随有效裂缝宽度变化关系

    Figure  12.  Relationship between modified factor ξ and effective crack width of NC, SF/NC, PP/NC and SF-PP/NC

    图  13  NC、SF/NC、PP/NC和SF-PP/NC裂缝表面重构图

    Figure  13.  Reconstruction views of crack surface of NC, SF/NC, PP/NC and SF-PP/NC

    表  1  混凝土基准配比

    Table  1.   Basic mix proportion of concrete kg·m−3

    CementFly ashFine aggregateCoarse aggregateWaterSuperplasticizer
    390 155 822 848 272.5 5.5
    下载: 导出CSV

    表  2  结构型SF和结构型PP的性能参数

    Table  2.   Properties of macro SF and macro PP

    TypeLength/mmDiameter/mmAspect ratioTensile strength/MPaE-modulus/GPaNumber/(pieces·kg−1)
    Macro SF 35 0.54 65 1 345 200.0 14 500
    Macro PP 30 0.67 45 490 3.9 96 000
    下载: 导出CSV

    表  3  结构型SF和结构型PP掺量

    Table  3.   Contents of macro SF and macro PP

    TypeMacro SFMacro PP
    NC
    SF20/NC 20 kg/m3 (0.25vol%)
    SF40/NC 40 kg/m3 (0.50vol%)
    SF60/NC 60 kg/m3 (0.75vol%)
    PP6.9/NC 6.9 kg/m3 (0.75vol%)
    SF40-PP2.3/NC 40 kg/m3 (0.50vol%) 2.3 kg/m3 (0.25vol%)
    下载: 导出CSV

    表  4  普通混凝土(NC)、结构型钢纤维增强混凝土(SF/NC)、结构型聚丙烯纤维增强混凝土(PP/NC)和混杂纤维增强混凝土(SF-PP/NC)的DCODAfeff的拟合曲线参数的对比

    Table  4.   Comparison of fitted parameter between DCOD and Afeff of normal concrete(NC), macro steel fiber reinforced concrete(SF/NC), macro polypropylene fiber reinforced concrete(PP/NC) and hybrid fiber reinforced concrete(SF-PP/NC)

    NCSF20/NCSF40/NCSF60/NCPP6.9/NCSF40-PP2.3/NC
    0.02906 (R2=0.99)0.03256 (R2=0.99)0.03551(R2=0.95)0.04039 (R2=0.98)0.03016 (R2=0.96)0.04237 (R2=0.97)
    Note: R2—Coefficient of determination.
    下载: 导出CSV

    表  5  NC、SF/NC、PP/NC和SF-PP/NC拟合曲线的参数

    Table  5.   Fitted parameters of curves of NC, SF/NC, PP/NC and SF-PP/NC

    Parameter βFitted parameter α
    NCSF20/NCSF40/NCSF60/NCPP6.9/NCSF40-PP2.3/NC
    1.541171 465.3(Cv=6.1%)66 963.0(Cv=8.9%)18 477.5(Cv=5.4%)1 942.1(Cv=7.6%)10 020.3(Cv=3.8%)1 431.0(Cv=5.1%)
    Note: Cv—Coefficient of variation.
    下载: 导出CSV

    表  6  NC、SF/NC、PP/NC和SF-PP/NC裂缝粗糙度

    Table  6.   Crack roughness number of NC, SF/NC, PP/NC and SF-PP/NC

    NCSF20/NCSF40/NCSF60/NCPP6.9/NCSF40-PP2.3/NC
    1.133 (Cv=1.9%)1.214 (Cv=3.6%)1.299 (Cv=6.9%)1.430 (Cv=4.7%)1.304(Cv=3.7%)1.480(Cv=4.1%)
    下载: 导出CSV
  • [1] NILSON A H, DARWIN D, DOLAN C. Design of concrete structures[M]. New York: McGraw Hill, 2011.
    [2] Fédération Internationale du Béton. Model code for concrete structures 2010[M]. Berlin: Wilhelm Ernst & Sohn, 2013.
    [3] DING Y, LI D, ZHANG Y. Quantitative analysis of macro steel fiber influence on crack geometry and water permeability of concrete[J]. Composite Structures,2018,187:325-335. doi: 10.1016/j.compstruct.2017.12.074
    [4] 施锦杰, 孙伟. 混凝土中钢筋锈蚀研究现状与热点问题分析[J]. 硅酸盐学报, 2010, 38(9):1753-1764.

    SHI Jinjie, SUN Wei. Recent research on steel corrosion in concrete[J]. Journal of the Chinese Ceramic Society,2010,38(9):1753-1764(in Chinese).
    [5] 牛荻涛, 孙丛涛. 混凝土碳化与氯离子侵蚀共同作用研究[J]. 硅酸盐学报, 2013, 41(8):1094-1099.

    NIU Ditao, SUN Congtao. Study on interaction of concrete carbonation and chloride corrosion[J]. Journal of the Chinese Ceramic Society,2013,41(8):1094-1099(in Chinese).
    [6] 丁一宁, 王卿, 林宇栋. 纤维对开裂后混凝土渗透性及裂缝恢复的影响[J]. 复合材料学报, 2017, 34(8):1853-1861.

    DING Yining, WANG Qing, LIN Yudong. Effect of fibers on permeability and crack relaxation of cracked concrete[J]. Acta Materiae Compositae Sinica,2017,34(8):1853-1861(in Chinese).
    [7] 杨成蛟, 黄承逵, 车轶, 等. 混杂纤维混凝土的力学性能及抗渗性能[J]. 建筑材料学报, 2008, 11(1):89-93. doi: 10.3969/j.issn.1007-9629.2008.01.017

    YANG Chengjiao, HUANG Chengkui, CHE Yi, et al. Mechanical properties and impermeability of hybrid fiber reinforced concrete[J]. Journal of Building Materials,2008,11(1):89-93(in Chinese). doi: 10.3969/j.issn.1007-9629.2008.01.017
    [8] 孙家瑛. 应力作用下纤维混凝土抗渗特征研究[J]. 建筑材料学报, 2012, 15(4):474-477. doi: 10.3969/j.issn.1007-9629.2012.04.007

    SUN Jiaying. Study on influence of external load on fiber concrete impermeability[J]. Journal of Building Materials,2012,15(4):474-477(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.04.007
    [9] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [10] 丁一宁, 任县伟, 李冬. 结构型钢纤维对混凝土单裂缝渗透特性的影响[J]. 水利学报, 2017, 48(1):13-20.

    DING Yining, REN Xianwei, LI Dong. Investigation of the fiber effect on the permeability of cracked concrete[J]. Journal of Hydraulic Engineering,2017,48(1):13-20(in Chinese).
    [11] BODIN J, DELAY F, MARSILY G D. Solute transport in a single fracture with negligible matrix permeability: 1. Fundamental mechanisms[J]. Hydrogeology Journal,2003,11(4):418-433. doi: 10.1007/s10040-003-0268-2
    [12] WANG K, JANSEN D C, SHAH S P, et al. Permeability study of cracked concrete[J]. Cement and Concrete Research,1997,27(3):381-393. doi: 10.1016/S0008-8846(97)00031-8
    [13] ALDEA C M, SHAH S P, KARR A. Permeability of cracked concrete[J]. Materials and Structures,1999,32(5):370-376. doi: 10.1007/BF02479629
    [14] RAPOPORT J, ALDEA C, SHAH S P, et al. Permeability of cracked steel fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering,2002,14(4):355-358. doi: 10.1061/(ASCE)0899-1561(2002)14:4(355)
    [15] YI S T, HYUN T Y, KIM J K. The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete[J]. Construction and Building Materials,2011,25(5):2576-2583. doi: 10.1016/j.conbuildmat.2010.11.107
    [16] AKHAVAN A, SHAFAATIAN S M H, RAJABIPOUR F. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars[J]. Cement and Concrete Research,2012,42(2):313-320. doi: 10.1016/j.cemconres.2011.10.002
    [17] BOULAY C, PONT S D, BELIN P. Real-time evolution of electrical resistance in cracking concrete[J]. Cement and Concrete Research,2009,39(9):825-831. doi: 10.1016/j.cemconres.2009.06.003
    [18] RASTIELLO G, BOULAY C, PONT S D, et al. Real-time water permeability evolution of a localized crack in concrete under loading[J]. Cement and Concrete Research,2014,56:20-28. doi: 10.1016/j.cemconres.2013.09.010
    [19] PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas and water permeability of concretes[J]. Cement and Concrete Research,2009,39(6):537-547. doi: 10.1016/j.cemconres.2009.03.009
    [20] JOHN S L, DAVIDE Z, SURENDRA P S. Permeability of cracked hybrid fiber-reinforced mortar under load[J]. ACI Materials Journal,2002,99(4):379-385.
    [21] 丁一宁, 李林泽, 曾伟. 纤维对混凝土的损伤、裂缝曲折度及裂缝恢复的影响[J]. 复合材料学报, 2019, 36(10):2439-2447.

    DING Yining, LI Linze, ZENG Wei. Fibers effect on the concrete damage, crack tortuosity and crack recovery[J]. Acta Materiae Compositae Sinica,2019,36(10):2439-2447(in Chinese).
    [22] 丁一宁, 郝晓卫, 门旭. 纤维对混凝土裂缝宽度、曲折度及渗透性的影响[J]. 复合材料学报, 2019, 36(2):491-497.

    DING Yining, HAO Xiaowei, MEN Xu. Effect of fiber on the crack width, tortuosity and permeability of concrete[J]. Acta Materiae Compositae Sinica,2019,36(2):491-497(in Chinese).
    [23] WAGNER C, VILLMANN B, SLOWIK V, et al. Water permeability of cracked strain-hardening cement-based composites[J]. Cement and Concrete Composites,2017,82:234-241. doi: 10.1016/j.cemconcomp.2017.06.003
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  257
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2019-12-06
  • 网络出版日期:  2019-12-13
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回