留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能

乔雪涛 王朋 闫存富 许华威 张力斌 贾克 杨泽 吴隆

乔雪涛, 王朋, 闫存富, 等. 钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能[J]. 复合材料学报, 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
引用本文: 乔雪涛, 王朋, 闫存富, 等. 钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能[J]. 复合材料学报, 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
QIAO Xuetao, WANG Peng, YAN Cunfu, et al. Preparation and properties of steel-polypropylene fiber reinforced artificial granite composite[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006
Citation: QIAO Xuetao, WANG Peng, YAN Cunfu, et al. Preparation and properties of steel-polypropylene fiber reinforced artificial granite composite[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1823-1831. doi: 10.13801/j.cnki.fhclxb.20191206.006

钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20191206.006
基金项目: 河南省科技攻关项目(172102210586 );河南省科技攻关项目(182102210512 );河南省教育厅重点计划项目(13A460131);河南省教育厅重点计划项目(14B460003);郑州市科技攻关项目(153PKJGG132)
详细信息
    通讯作者:

    乔雪涛,博士,副教授,研究方向为精密制造技术与装备 E-mail:xtqiao@126.com

  • 中图分类号: TG584;TB332

Preparation and properties of steel-polypropylene fiber reinforced artificial granite composite

  • 摘要: 为深入研究钢-聚丙烯纤维增强人造花岗岩复合材料(钢-聚丙烯纤维/人造花岗岩)抗压、抗弯强度的影响因素,通过排水法实验研究了骨料堆积的空隙率,确定了骨料级配和实验指数q并对大量试件进行了抗压、抗弯强度测试,分析了钢-聚丙烯纤维/人造花岗岩复合材料各组分质量分数、骨料堆积空隙率等因素对钢-聚丙烯纤维/人造花岗岩复合材料抗压、抗弯强度的影响。实验结果表明:钢纤维与聚丙烯纤维能够明显增大钢-聚丙烯纤维/人造花岗岩复合材料的抗弯强度,随着钢-聚丙烯纤维质量分数的增加,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压和抗弯强度都逐渐增大;当钢纤维与聚丙烯纤维质量比为30∶1、钢-聚丙烯纤维质量分数为1.7wt%时,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压强度达到最大,当钢-聚丙烯纤维质量分数为1.9wt%时,钢-聚丙烯纤维/人造花岗岩试件的抗弯强度达到最大;黏结剂质量分数越接近骨料堆积空隙率,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压和抗弯强度越大,当骨料质量分数为80wt%、黏结剂质量分数为11wt%时,钢-聚丙烯纤维/人造花岗岩复合材料试件的抗压、抗弯强度同时达到最大。

     

  • 图  1  四种骨料堆积模型

    Figure  1.  Four aggregate aggregation models

    图  2  实验指数q为0.33和0.5时骨料堆积的最大密实度曲线

    Figure  2.  Curves of maximum compactness of aggregate accumulation with experimental indexes q of 0.33 and 0.5

    图  3  各级骨料在实验指数q为0.44时的质量分数

    Figure  3.  Mass fractions of aggregate with different sizes in the total mass of aggregate when the experimental index q is 0.44

    图  4  排水法实验检测骨料堆积空隙率

    Figure  4.  Test of aggregate void ratio by drainage method

    图  5  排水法实验流程

    Figure  5.  Flow chart of drainage experiment

    图  6  钢-聚丙烯纤维/人造花岗岩复合材料制备流程

    Figure  6.  Steel polypropylene fiber/artificial granite composite specimen making process

    图  7  钢-聚丙烯纤维/人造花岗岩复合材料各组分材料

    Figure  7.  Different component materials of steel polypropylene fiber/artificial granite composite

    图  8  钢-聚丙烯纤维/人造花岗岩复合材料成型试件

    Figure  8.  Formed steel polypropylene fiber/artificial granite composite specimens

    图  9  钢-聚丙烯纤维/人造花岗岩复合材料试件抗压强度测试

    Figure  9.  Compressive strength test of steel polypropylene fiber/artificial granite composite specimen

    图  10  钢-聚丙烯纤维/人造花岗岩复合材料试件抗弯强度测试

    Figure  10.  Bending strength test of steel polypropylene fiber/artificial granite composite specimen

    图  11  钢-聚丙烯纤维/人造花岗岩复合材料试件的抗弯测试加载方式

    Figure  11.  Loading mode of bending test of steel polypropylene fiber/artificial granite composite specimen

    图  12  钢-聚丙烯纤维/人造花岗岩复合材料试件在不同原料配比下的抗压强度

    Figure  12.  Compressive strengths of steel polypropylene fiber/artificial granite composite specimens with different proportions of raw materials

    图  13  钢-聚丙烯纤维/人造花岗岩复合材料试件在不同原料配比下的抗弯强度

    Figure  13.  Bending strengths of steel polypropylene fiber/artificial granite composite specimens with different proportions of raw materials

    图  14  钢纤维在树脂基体中形貌的SEM图像

    Figure  14.  SEM images of steel fiber morphology in resin matrix

    表  1  HORSFIELD最密填充数据

    Table  1.   HORSFIELD's closest filling data

    Filling stateParticle size of aggregateRelative number of aggregatesVoid fraction
    First fillingD10.2595
    Second fillingd=0.414D10.207
    Notes: D—Primary aggregate size; d—Diameter of the sieve hole.
    下载: 导出CSV

    表  2  不同骨料堆积模式对应的次级骨料粒径

    Table  2.   Secondary aggregate size corresponding to different aggregate accumulation models

    Aggregate accumulation modelThree-
    circle
    Two circles and one lineOne circle and two linesThree-
    line
    Secondary aggregate size0.15D0.2D0.24D0.29D
    下载: 导出CSV

    表  3  五种筛孔直径

    Table  3.   Five sieve hole diameters

    Controlling sizes of
    sieve hole
    d1/mmd2/mmd3/mmd4/mmd5/mm
    Size0.110.522.364.7510.00
    下载: 导出CSV

    表  4  两种纤维主要性能指标

    Table  4.   Main performance indicators of two fibers

    Fiber typeDiameter/
    μm
    Tensile strength/
    MPa
    Modulus of elasticity/
    GPa
    Density/
    (g·cm−3
    Steel fiber5003 0002107.8
    Polypropylene fiber357004.20.9
    下载: 导出CSV

    表  5  钢-聚丙烯纤维/人造花岗岩复合材料力学性能实验设计

    Table  5.   Design of mechanical property experiment of steel polypropylene fiber/artificial granite composites

    Serial
    number
    Fibre/wt%Filler/wt%Aggregate/wt%Binder/wt%
    1 1.3 7.7 83 8
    2 1.5 7.5 83 8
    3 1.7 7.3 83 8
    4 1.9 7.1 83 8
    5 2.1 6.9 83 8
    6 1.3 7.7 82 9
    7 1.5 7.5 82 9
    8 1.7 7.3 82 9
    9 1.9 7.1 82 9
    10 2.1 6.9 82 9
    11 1.3 7.7 81 10
    12 1.5 7.5 81 10
    13 1.7 7.3 81 10
    14 1.9 7.1 81 10
    15 2.1 6.9 81 10
    16 1.3 7.7 80 11
    17 1.5 7.5 80 11
    18 1.7 7.3 80 11
    19 1.9 7.1 80 11
    20 2.1 6.9 80 11
    21 1.3 7.7 79 12
    22 1.5 7.5 79 12
    23 1.7 7.3 79 12
    24 1.9 7.1 79 12
    25 2.1 6.9 79 12
    26 0 9.0 83 8
    27 0 9.0 82 9
    28 0 9.0 81 10
    29 0 9.0 80 11
    30 0 9.0 79 12
    下载: 导出CSV
  • [1] 刘敬福, 李赫亮, 牟新. 钢纤维增强聚合物树脂混凝土力学性能研究[J]. 机械工程材料, 2005(8):49-51. doi: 10.3969/j.issn.1000-3738.2005.08.017

    LIU Jingfu, LI Heliang, MOU Xin. Study on mechanical properties of steel fiber reinforced polymer resin concrete[J]. Mechanical Engineering Materials,2005(8):49-51(in Chinese). doi: 10.3969/j.issn.1000-3738.2005.08.017
    [2] 丁一宁, 朱昊, 李冬. 结构型钢纤维对单轴受压下混凝土渗透性及损伤的影响[J]. 复合材料学报, 2019, 36(12):2942-2949. doi: 10.13801/j.cnki.fhclxb.20190314.004

    DING Yining, ZHU Hao, LI Dong. Influence of structural steel fiber on permeability and damage of concrete under uniaxial compression[J]. Acta Materiae Compositae Sinica,2019,36(12):2942-2949(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190314.004
    [3] 王涛. 机床用碳纤维增强树脂矿物复合材料的制备与性能研究[D]. 济南: 山东大学, 2014.

    WANG Tao. Study on preparation and properties of carbon fiber reinforced resin mineral composites for machine tools[D]. Ji'nan: Shandong University, 2014(in Chinese).
    [4] 姜焕英, 王大鹏, 王志明, 等. 玻璃纤维增强热塑性树脂复合材料界面表征方法的研究[J]. 玻璃钢/复合材料, 2019(5):77-82. doi: 10.3969/j.issn.1003-0999.2019.05.013

    JIANG Huanying, WANG Dapeng, WANG Zhiming, et al. Study on the characterization of the interface of glass fiber reinforced thermoplastic resin composites[J]. FRP/Composites,2019(5):77-82(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.05.013
    [5] 王泽宁. 钼纤维增强树脂矿物复合材料机理研究[D]. 济南: 山东大学, 2013.

    WANG Zening. Mechanism of molybdenum fiber reinforced resin mineral composites[D]. Ji'nan: Shandong U-niversity, 2013(in Chinese).
    [6] 于英华, 梁宇, 沈佳兴, 等. 玄武岩纤维增强树脂混凝土机床基础件结构设计及其性能仿真分析[J]. 机械设计, 2017, 34(1):71-75.

    YU Yinghua, LIANG Yu, SHEN Jiaxing, et al. Basalt fiber reinforced resin concrete machine tool foundation structure design and performance simulation analysis[J]. Mechanical Design,2017,34(1):71-75(in Chinese).
    [7] 杰德尔别克, 赵海涛, 巴合特别克, 等. 钢纤维和聚丙烯纤维高性能混凝土力学性能试验研究[J]. 新型建筑材料, 2018, 45(2):22-25. doi: 10.3969/j.issn.1001-702X.2018.02.007

    JIEDEER Bieke, ZHAO Haitao, BA Hetebieke, et al. Experimental study on mechanical properties of high performance steel fiber and polypropylene fiber concrete[J]. New Building Materials,2018,45(2):22-25(in Chinese). doi: 10.3969/j.issn.1001-702X.2018.02.007
    [8] 马芳武, 杨猛, 蒲永锋, 等. 混杂比对碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2019, 36(2):362-369.

    MA Fangwu, YANG Meng, PU Yongfeng, et al. Effect of hybrid ratio on bending properties of carbon fiber basalt fiber hybrid reinforced epoxy resin matrix composite[J]. Acta Materiae Compositae Sinica,2019,36(2):362-369(in Chinese).
    [9] 徐平, 沈佳兴, 于英华, 等. 偶联时间对玄武岩纤维树脂混凝土强度的影响[J]. 非金属矿, 2016, 39(3):47-49, 80. doi: 10.3969/j.issn.1000-8098.2016.03.015

    XU Ping, SHEN Jiaxing, YU Yinghua, et al. Effect of coupling time on the strength of basalt fiber resin concrete[J]. Non Metallic Minerals,2016,39(3):47-49, 80(in Chinese). doi: 10.3969/j.issn.1000-8098.2016.03.015
    [10] 朋改非, 牛旭婧, 赵怡琳. 异形钢纤维对超高性能混凝土增强增韧的影响[J]. 建筑材料学报, 2016, 19(6):1013-1018. doi: 10.3969/j.issn.1007-9629.2016.06.010

    PENG Gaifei, NIU Xujing, ZHAO Yilin. The influence of profiled steel fiber on the reinforcement and toughening of UHPC[J]. Journal of Building Materials,2016,19(6):1013-1018(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.06.010
    [11] WASIM A M, IQBAL K, SHEHAB M. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete[J]. Construction and Building Materials,2018,168:556-569. doi: 10.1016/j.conbuildmat.2018.02.164
    [12] 丁一宁, 李林泽, 曾伟. 纤维对混凝土的损伤、裂缝曲折度及裂缝恢复的影响[J]. 复合材料学报, 2019, 36(10):2439-2447.

    DING Yining, LI Linze, ZENG Wei. Influence of fiber on damage, crack curvature and crack recovery of concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2439-2447(in Chinese).
    [13] HANNAWI K, BIAN H, PRINCE-AGBODJAN W, et al. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes[J]. Composites Part B: Engineering,2016,86:214-220. doi: 10.1016/j.compositesb.2015.09.059
    [14] 卢安琪, 祝烨然, 李克亮, 等. 聚丙烯纤维混凝土试验研究[J]. 水利水运工程学报, 2002(4):14-19. doi: 10.3969/j.issn.1009-640X.2002.04.003

    LU Anqi, ZHU Yeran, LI Keliang, et al. Experimental study on polypropylene fiber concrete[J]. Journal of Water Resources and Water Transportation Engineering,2002(4):14-19(in Chinese). doi: 10.3969/j.issn.1009-640X.2002.04.003
    [15] YUAN C, CHEN W, PHAM T M, et al. Bond behavior between basalt fibres reinforced polymer sheets and steel fibres reinforced concrete[J]. Engineering Structures,2018,176:812-824. doi: 10.1016/j.engstruct.2018.09.052
    [16] 刘世明, 刘永健, 李晓克, 等. 开孔钢板加劲的矩形钢管钢纤维高强混凝土柱轴压试验研究[J]. 建筑结构学报, 2018, 39(12):22-28.

    LIU Shiming, LIU Yongjian, LI Xiaoke, et al. Axial compression test of rectangular steel tube reinforced high-strength concrete columns strengthened with steel plate with openings[J]. Journal of Architectural Structures,2018,39(12):22-28(in Chinese).
    [17] 唐佳军, 裴长春. 撒布式混杂钢纤维再生混凝土力学性能[J]. 科学技术与工程, 2019, 19(18):265-270. doi: 10.3969/j.issn.1671-1815.2019.18.040

    TANG Jiajun, PEI Changchun. Mechanical properties of spread hybrid steel fiber recycled concrete[J]. Science and Technology and Engineering,2019,19(18):265-270(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.18.040
    [18] ALBERTI M G, ENFEDAQUE A, GALVEZ J. C. Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size[J]. Engineering Fracture Mechanics,2016,154:225-244. doi: 10.1016/j.engfracmech.2015.12.032
    [19] 吴隆. 高速铣床树脂混凝土床身制造的研究[J]. 现代制造工程, 2004(2):77-78. doi: 10.3969/j.issn.1671-3133.2004.02.028

    WU Long. Research on manufacturing of resin concrete bed for high speed milling machine[J]. Modern Manufacturing Engineering,2004(2):77-78(in Chinese). doi: 10.3969/j.issn.1671-3133.2004.02.028
    [20] 李鹏, 季忠, 刘韧, 等. 矿物复合材料及其在机床上的应用[J]. 机床与液压, 2013, 41(19):159-163. doi: 10.3969/j.issn.1001-3881.2013.19.045

    LI Peng, JI Zhong, LIU Ren, et al. Mineral composite materials and their applications in machine tools[J]. Machine Tools and Hydraulic Pressures,2013,41(19):159-163(in Chinese). doi: 10.3969/j.issn.1001-3881.2013.19.045
    [21] 赵惠英, 于贺春, 赵则祥, 等. 机床基础件应用人造花岗岩的发展和现状[J]. 制造技术与机床, 2012(12):64-67. doi: 10.3969/j.issn.1005-2402.2012.12.019

    ZHAO Huiying, YU Hechun, ZHAO Zexiang, et al. The development and present situation of artificial granite applied to machine tool foundations[J]. Manufacturing Technology and Machine Tools,2012(12):64-67(in Chinese). doi: 10.3969/j.issn.1005-2402.2012.12.019
    [22] 许华威. 超精密外圆磨床床身用人造花岗岩材料试验研究[D]. 郑州: 中原工学院, 2017.

    XU Huawei. Experimental study on artificial granite material for ultra-precision cylindrical grinder bed[D]. Zhengzhou: Zhongyuan Institute of Technology, 2017(in Chinese).
    [23] 周仕学. 粉体工程导论[M]. 北京: 科学出版社, 2010.

    ZHOU Shixue. Introduction to powder engineering[M]. Beijing: Science Press, 2010(in Chinese).
    [24] 郝培文, 徐金枝, 周怀治. 应用贝雷法进行级配组成设计的关键技术[J]. 长安大学学报(自然科学版), 2004(6):1-6.

    HAO Peiwen, XU Jinzhi, ZHOU Huaizhi. Key technology of gradation composition design using Bayley method[J]. Journal of Chang'an University (Natural Science Edition),2004(6):1-6(in Chinese).
    [25] 中华人民共和国交通部. 公路工程集料试验规程: JTJ058—2000[S]. 北京: 人民交通出版社, 2000.

    Ministry of Communications of the People's Republic of China. Highway engineering aggregate test rules: JTJ058-2000[S]. Beijing: People's Communications Publishing House, 2000(in Chinese).
    [26] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: . GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction of the People's Republic of China. Standard for testing method of mechanical properties of ordinary concrete: GB/T 50081-2002[S]. Beijing: China Construction Industry Press, 2003(in Chinese).
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  962
  • HTML全文浏览量:  295
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-11-05
  • 网络出版日期:  2019-12-07
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回