留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像

万陶磊 常俊杰 曾雪峰 李媛媛

万陶磊, 常俊杰, 曾雪峰, 等. 基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像[J]. 复合材料学报, 2020, 37(8): 1921-1931. doi: 10.13801/j.cnki.fhclxb.20191031.003
引用本文: 万陶磊, 常俊杰, 曾雪峰, 等. 基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像[J]. 复合材料学报, 2020, 37(8): 1921-1931. doi: 10.13801/j.cnki.fhclxb.20191031.003
WAN Taolei, CHANG Junjie, ZENG Xuefeng, et al. Damage identification and scanning imaging of glass fiber reinforced polymer composite plates based on empirical mode decomposition and correlation coefficient[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1921-1931. doi: 10.13801/j.cnki.fhclxb.20191031.003
Citation: WAN Taolei, CHANG Junjie, ZENG Xuefeng, et al. Damage identification and scanning imaging of glass fiber reinforced polymer composite plates based on empirical mode decomposition and correlation coefficient[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1921-1931. doi: 10.13801/j.cnki.fhclxb.20191031.003

基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像

doi: 10.13801/j.cnki.fhclxb.20191031.003
基金项目: 国家自然科学基金(11464030)
详细信息
    通讯作者:

    常俊杰,博士,副教授,研究方向为超声无损检测的应用技术及检测设备的研发 E-mail:junjiechang@hotmail.com

  • 中图分类号: TB559

Damage identification and scanning imaging of glass fiber reinforced polymer composite plates based on empirical mode decomposition and correlation coefficient

  • 摘要: 针对外界环境噪声等因素造成损伤因子不敏感,导致复合材料损伤识别困难和成像误差大等问题,提出了一种基于经验模态分解(Empirical mode decomposition, EMD)和相关系数的损伤因子。用空气耦合探头采集损伤前后的Lamb波信号进行EMD分解获取多个本征模态分量(Intrinsic mode function, IMF)。根据相关系数获取与信号相关性最大的IMF分量,并定义其能量值的相对变化为损伤因子。在模拟噪声环境前后,分别对玻璃纤维增强聚合物复合材料(GFRP)板中的分层缺陷进行识别和扫查成像,验证了该损伤因子的有效性。结果表明:信号经过EMD分解后,与其相关性最大的IMF分量对损伤最敏感,能够定义为识别损伤的损伤因子。将该损伤因子结合概率成像方法进行空耦Lamb波扫查,不仅能够有效对复合材料中的缺陷进行成像,而且在模拟强噪声环境中具有良好的抗噪性。

     

  • 图  1  空气耦合超声检测实验系统示意图

    Figure  1.  Schematic diagram of air-coupled ultrasonic experimental system

    图  2  空气耦合超声探头入射角度频散曲线

    Figure  2.  Air-coupled ultrasonic probe incidence angle dispersion curves

    图  3  无损伤信号的前四阶本征模态(IMF)分量

    Figure  3.  Intrinsic mode function(IMF) components of the first four orders of no damage signal

    图  4  无损伤信号的前四阶IMF分量频谱

    Figure  4.  Spectra of IMF components of the first four orders of no damage signal

    图  5  IMF分量与原始信号的相关系数

    Figure  5.  Correlation coefficient between IMF components and original signal

    图  6  损伤前后信号的各阶IMF能量差

    Figure  6.  All IMF components energy differences of signals before and after damage

    图  7  椭圆分布概率损伤示意图

    Figure  7.  Elliptic distribution probability damage diagram

    图  8  GFRP本征模态能量损伤因子(IEDI)与扫查距离的关系

    Figure  8.  Relationship between intrinsic mode function energy damage index(IEDI) and scanning distance of GFRP

    图  9  GFRP空耦C扫查成像与IEDI成像

    Figure  9.  Air-coupled C-scan imaging and IEDI imaging of GFRP

    图  10  添加噪声信号后GFRP有无损伤信号

    Figure  10.  No damage and damage signal with adding noise signal of GFRP

    图  11  GFRP噪声信号与其IMF分量的相关系数

    Figure  11.  Correlation coefficients between noise signals with their IMF components of GFRP

    图  12  GFRP损伤前后噪声信号与参考信号IMF分量的能量差异

    Figure  12.  Energy differences of IMF components of noise signal and reference signal before and after damage of GFRP

    图  13  基于IEDI在不同等级噪声下GFRP的损伤成像

    Figure  13.  Damage imaging based on IEDI under different levels of noise of GFRP

    图  14  基于计盒维数损伤因子(BDI)在不同等级噪声下的损伤成像

    Figure  14.  Damage imaging based on box-counting dimension damage index(BDI) under different levels of noise

    表  1  GFRP不同损伤因子的对比结果

    Table  1.   Comparison results of different damage factors of GFRP

    Noise levelBox counting-dimensionBDIIMF energyIEDI
    No damageDamageNo damageDamage
    No noise 1.14 1.53 0.057 25.85 2.62 0.90
    9 dB 1.55 1.60 0.03 19.55 1.15 0.94
    5 dB 1.58 1.63 0.03 21.39 1.09 0.94
    1 dB 1.62 1.66 0.02 19.61 1.52 0.92
    0.1 dB 1.63 1.66 0.01 15.77 1.92 0.87
    下载: 导出CSV

    表  2  GFRP成像定位结果

    Table  2.   Imaging location results of GFRP

    Noise levelActual positionIEDI positionError/mmBDI positionError/mm
    (x,y)(x,y)(x,y)
    No noise (92,98) (92,99) 1.00 (92,100) 2.00
    9 dB (92,98) (93,98) 1.00 (92,100) 2.00
    5 dB (92,98) (93,98) 1.00 (91,100) 2.23
    1 dB (92,98) (93,99) 1.41 (90,100) 2.82
    0.1 dB (92,98) (93,99) 1.41 (90,101) 3.60
    下载: 导出CSV

    表  3  GFRP不同损伤因子成像后在xy方向上的定量结果

    Table  3.   Imaging results of different damage factors in the x and y directions of GFRP

    Noise levelAutal sizeIEDI sizeError/mmBDI sizeError /mm
    x/mmy/mmx/mmy/mmx/mmy/mmx/mmy/mmx/mmy/mm
    No noise 35.00 35.00 38.40 37.20 3.40 2.20 30.20 31.50 4.80 3.50
    9 dB 35.00 35.00 38.70 39.70 3.70 4.70 27.90 29.60 7.10 5.40
    5 dB 35.00 35.00 39.10 39.90 4.10 4.90 27.70 30.40 7.30 4.60
    1 dB 35.00 35.00 38.90 40.30 3.90 5.30 30.00 98.20 5.00 63.20
    0.1 dB 35.00 35.00 38.20 38.40 3.20 3.40 52.60 98.80 17.60 63.80
    下载: 导出CSV
  • [1] FENG P, WANG J, WANG Y, et al. Effects of corrosive environments on properties of pultruded GFRP plates[J]. Composites Part B: Engineering,2014,67:427-433. doi: 10.1016/j.compositesb.2014.08.021
    [2] OPRISAN G, TARANU N, MUNTEANU V, et al. Application of modern polymer composite materials in industrial construction[J]. Bulletin of the Polytechnic Institute of Jassy Constructions Architechture,2010,3(3):1-20.
    [3] 代礼葵,孙耀宁,王国建. 玻璃纤维/环氧乙烯基酯树脂复合材料环境综合因素下的冲蚀行为及机制[J]. 复合材料学报, 2019, 36(9):2059-2066.

    DAI Likui, SUN Yaoning, WANG Guojian. Erosion behavior and mechanism of glass fiber/epoxy vinlester compo-sites under multiple environmental[J]. Acta Materiae Compositae Sinica,2019,36(9):2059-2066(in Chinese).
    [4] 刘增华, 樊军伟, 何存富, 等. 基于概率损伤算法的复合材料板空气耦合Lamb波扫描成像[J]. 复合材料学报, 2015, 32(1):227-235.

    LIU Zenghua, FAN Junwei, HE Cunfu, et al. Scanning im-aging of composite plate using air-coupled Lamb waves based on probabilistic damage algorithm[J]. Acta Materiae Composite Sinica,2015,32(1):227-235(in Chinese).
    [5] 张倩昀, 张华, 赵银燕. 复合材料冲击损伤监测的概率成像方法[J]. 应用声学, 2016, 35(5):426-430.

    ZHANG Qianyun, ZHANG Hua, ZHAO Yinyan. A probability imaging method of composite impact damage monitoring[J]. Applied Acoustics,2016,35(5):426-430(in Chinese).
    [6] 刘小峰, 夏宇峰, 蔡雨洋. 基于关联维数的超声Lamb波损伤成像[J]. 压电与声光, 2018, 40(1):115-118.

    LIU Xiaofeng, XIA Yufeng, CAI Yuyang. Ultrasonic lamb wave damage imaging based on correlation dimension[J]. Piezo Electrics and Acousto Optics,2018,40(1):115-118(in Chinese).
    [7] 常俊杰, 卢超, 川嶋紘一郎. 非接触空气耦合超声波的材料无损评价与检测[J]. 浙江理工大学学报, 2015, 33(7):532-536, 542.

    CHANG Junjie, LU Chao, KAWASHIMA. Nondestructive material evaluation and testing basedon noncontact air-coupled ultrasonics[J]. Journal of Zhejiang Sci-Tech University,2015,33(7):532-536, 542(in Chinese).
    [8] 常俊杰, 杨凯, 李光亚, 等. 空耦超声波技术用于锂离子电池缺陷检测[J]. 电池, 2017, 47(5):315-317.

    CHANG Junjie, YANG Kai, LI Guangya, et al. Application of air-coupled ultrasonic technology in Lion battery defect detection[J]. Battery Bimonthly,2017,47(5):315-317(in Chinese).
    [9] 常俊杰, 李媛媛, 胡宸, 等.钢轨踏面的空气耦合超声检测方法[J]. 应用声学, 2019(3): 1-6.

    CHANG Junjie, LI Yuanyuan, HU Chen, et al. Air coupled ultrasonic testing method for railtread[J]. Applied Acoustics, 2019(3): 1-6(in Chinese).
    [10] 刘国强, 肖迎春, 张华, 等. 复合材料加筋壁板损伤识别的概率成像方法[J]. 复合材料学报, 2018, 35(2):311-319.

    LIU Guoqiang, XIAO Yingchun, ZHANG Hua, et al. Probability based diagnostic imaging for damage identification of stiffened composite panel[J]. Acta Materiae Compositae Sinica,2018,35(2):311-319(in Chinese).
    [11] 刘彬, 邱雷, 袁慎芳, 等. 复合材料T型接头损伤监测的概率成像方法[J]. 振动.测试与诊断, 2015, 35(3):519-524,593-594.

    LIU Bin, QIU Lei, YUAN Shenfang, et al. Probabilistic imaging method of composite T-joint damage monitoring[J]. Journal of Vibration, Mearsurement, Diagnosis,2015,35(3):519-524,593-594(in Chinese).
    [12] 刘国强, 孙侠生, 肖迎春, 等. 基于Lamb波和Hilbert变换的复合材料T型加筋损伤监测[J]. 复合材料学报, 2014, 31(3):818-823.

    LIU Guoqiang, SUN Xiasheng, XIAO Yingchun, et al. Damage monitoring of composite T-joint using Lamb wave and Hilbert transform[J]. Acta Materiae Compositae Sinica,2014,31(3):818-823(in Chinese).
    [13] IHN J B, CHANG F K. Detection and monitoring of hidden fatigue crack growth using a built in piezoelectric sen-sor/actuator netork: I. Diagnostics[J]. Smart Materials and Structures,2004,13(3):609-620. doi: 10.1088/0964-1726/13/3/020
    [14] 苏晨辉,姜明顺,梁建英, 等. 强噪声下碳纤维增强树脂复合材料结构Lamb波层析损伤成像方法[J]. 复合材料学报, 2020, 37(4):886-895.

    SU Chenghui, JIANG Mingshun, LIANG Jianying, et al. Lamb wave tomography damage imaging of composite structuresin strong noise environment[J]. Acta Materiae Compositae Sinica,2020,37(4):886-895(in Chinese).
    [15] QIAO Nan, WANG Lihui, LIU Qingya, et al. Multi-scale eigenvalues empirical mode decomposition for geomagnetic signal filtering[J]. Measurement,2019,146:885-891.
    [16] 池永为, 杨世锡, 焦卫东, 等. 基于EMD-DCS的滚动轴承伪故障特征识别方法[J]. 振动与冲击, 2020, 39(9):9-16.

    CHI Yongwei, YANG Shixi, JIAO Weidong, et al. EMD-DCS based pseudo-fault feature identification method for rolling bearings[J]. Journal of Vibration and Shock,2020,39(9):9-16(in Chinese).
    [17] 陈闯, 俞鹏, 王银辉. 基于马氏距离累积量和EMD的结构损伤识别两步法[J]. 振动与冲击, 2019, 38(13):142-150.

    CHEN Chuang, YU Peng, WANG Yinhui. A two-step method for structural damage identification based on Mahalanobis distance accumulation and EMD[J]. ] Journal of Vibration and Shock,2019,38(13):142-150(in Chinese).
    [18] 余腾, 胡伍生, 吴杰, 等. 基于小波阈值去噪与EMD分解方法提取润扬大桥振动信息[J]. 振动与冲击, 2019, 38(12):264-270.

    YU Teng, HU Wusheng, WU Jie, et al. Extraction of Runyang bridge vibration information based on a fusion method of wavelet threshold denoising and EMD decomposition[J]. Journal of Vibration and Shock,2019,38(12):264-270(in Chinese).
    [19] 李秋锋, 黄攀, 施倩, 等. 基于经验模态分解去噪的粗晶材料超声检测[J]. 应用基础与工程科学学报, 2014, 22(3):566-573.

    LI Qiufeng, HUANG Pan, SHI Qian, et al. Ultrasonic test-ing of coarse grained materials based on EMD denoising method[J]. Journal of Basic Science and Engineering,2014,22(3):566-573(in Chinese).
    [20] IMIELINSKA K, CASTAINGS M, WOJTYRA R, et al. Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: Glass, carbon and Kevlar/epoxy composites[J]. Journal of Materials Processing Technology,2004,157-158:513-522. doi: 10.1016/j.jmatprotec.2004.07.143
    [21] CASTAINGS M, CAWLEY P. The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers[J]. Journal of the Acoustical Society of America,1996,100(5):3070-3077. doi: 10.1121/1.417193
    [22] CASTAINGS M, HOSTEN B. Lamb and SH waves generatedand detected by air coupled ultrasonic transducers in composite material plates[J]. NDT <italic>&</italic> E International,2001,34(4):249-258.
    [23] 何存富, 刘岳鹏, 刘增华. 空气耦合Lamb波在单晶硅中的传播特性和缺陷检测研究[J]. 机械工程学报, 2015, 51(12):1-7. doi: 10.3901/JME.2015.12.001

    HE Cunfu, LIU Yuepeng, LIU Zenghua. Air-coupled Lamb waves propagation characteristics and defect detection in monocrystalline silicon[J]. Journal of Mechanical Engi-neering,2015,51(12):1-7(in Chinese). doi: 10.3901/JME.2015.12.001
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  259
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-10-18
  • 网络出版日期:  2019-10-31
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回