Loading [MathJax]/jax/output/SVG/jax.js

生物质衍生碳基复合吸波材料的分类、吸波机制与研究进展

武志红, 任安文, 刘一军, 薛群虎, 牛丹, 常吉进

武志红, 任安文, 刘一军, 等. 生物质衍生碳基复合吸波材料的分类、吸波机制与研究进展[J]. 复合材料学报, 2024, 41(8): 3910-3934. DOI: 10.13801/j.cnki.fhclxb.20240304.005
引用本文: 武志红, 任安文, 刘一军, 等. 生物质衍生碳基复合吸波材料的分类、吸波机制与研究进展[J]. 复合材料学报, 2024, 41(8): 3910-3934. DOI: 10.13801/j.cnki.fhclxb.20240304.005
WU Zhihong, REN Anwen, LIU Yijun, et al. Classification, absorbing mechanism and research progress of biomass-derived carbon-based composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3910-3934. DOI: 10.13801/j.cnki.fhclxb.20240304.005
Citation: WU Zhihong, REN Anwen, LIU Yijun, et al. Classification, absorbing mechanism and research progress of biomass-derived carbon-based composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3910-3934. DOI: 10.13801/j.cnki.fhclxb.20240304.005

生物质衍生碳基复合吸波材料的分类、吸波机制与研究进展

基金项目: 国家自然科学基金项目(51974218) ;广东省大尺寸陶瓷薄板企业重点实验室开放课题(KFKT2023002) ;西安建筑科技大学基础研究基金(JC1406)
详细信息
    通讯作者:

    武志红,博士,副教授,硕士生导师,研究方向为功能复合材料、吸波材料 E-mail: zhihong@xauat.edu.cn

  • 中图分类号: TB332

Classification, absorbing mechanism and research progress of biomass-derived carbon-based composite absorbing materials

Funds: National Natural Science Foundation Project of China (51974218); Guangdong Provincial Key Laboratory of Large Ceramic Plates (KFKT2023002); Basic Research Foundation of Xi'an University of Architecture and Technology (JC1406)
  • 摘要: 为解决电子信息技术带来的电磁波污染问题,碳基复合吸波材料受到了广泛的关注。生物质衍生碳复合材料不仅具有优异的电磁波吸收能力,还具有密度小、来源广泛和成本低等优点。本文首先阐述了生物质衍生碳的制备方法及过程;其次,依据生物科学分类法系统归纳了植物界类、真菌类、原生生物界类的3种生物质衍生碳的结构形貌特征,对生物质衍生碳基复合吸波材料近些年的研究成果进行了总结与综述;接着,对不同分类的吸波材料的结构形貌与电磁波吸收性能进行了对比,并分析了各类材料的吸波机制。最后,分析了目前生物质衍生碳基复合材料的吸波性能及其缺点,并对未来发展方向进行展望。本文为推进非动物类生物质衍生碳复合吸波材料的研究提供了较全面的归纳、分类、分析与理论支持,为其未来发展提供了思路。

     

    Abstract: In order to solve the electromagnetic wave pollution caused by electronic information technology, carbon-based composite absorbing materials have received extensive attention. Biomass-derived carbon composites not only have excellent electromagnetic wave absorption ability, but also have the advantages of low density, wide source and low cost. Firstly, the preparation method and process of biomass derived carbon are described. Secondly, the structural and morphological characteristics of three kinds of biomass-derived carbon, including plant kingdom, fungus kingdom and protista kingdom, were systematically summarized, and the research results of biomass-derived carbon-based composite absorbing materials in recent years were summarized. Then, the structural morphology and electromagnetic wave absorption properties of different kinds of absorbing materials are compared, and the absorbing mechanism of various materials is analyzed. Finally, the current wave absorbing properties and disadvantages of biomass-derived carbon matrix composites are analyzed, and the future development direction is prospected. This paper provides comprehensive induction, classification, analysis and theoretical support for promoting the research of non-animal biomass derived carbon composite absorbing materials, and provides ideas for its future development.

     

  • 工程用水泥基复合材料(Engineered cementitious composites,ECC)是基于微观力学和断裂力学系统设计的高性能纤维增强材料,具有超高韧性、良好的应变硬化和裂缝控制能力,已广泛应用于混凝土结构加固[1-3]。然而,作为水泥基材料本身,其抗拉强度有限,需要结合相应的增强材料以充分发挥其材料特性。由于高强钢绞线(High-strength steel wire rope,HSSWR)抗拉强度高、耐腐蚀,且极限拉应变与聚乙烯醇(PVA)-ECC接近,故课题组将高强钢绞线网嵌入ECC并开展相关研究。结果表明:钢绞线网与ECC有良好的粘结性能;钢绞线网增强ECC(High strength steel wire mesh reinforced ECC,HSSWM-ECC)用于加固钢筋混凝土(Reinforced concrete,RC)梁的抗弯承载力、抗裂性、弯曲韧性等受力性能均得到了显著提升[4-7]

    然而,大多数HSSWM-ECC加固RC梁试件出现了跨中或端部的局部剥离,不利于HSSWM-ECC加固效果的充分发挥。由于材料间的界面粘结性能是实现加固效果的关键[8-10],有必要对HSSWM-ECC与混凝土的粘结性能展开研究。Mansour等[11]基于斜剪、劈裂拉伸和直剪试验探究表面处理方法对超高性能纤维增强混凝土-混凝土和混凝土-混凝土界面粘结性能的影响,包括钢丝刷、钻孔、刻槽、涂环氧树脂和胶体胶。结果表明:钻孔和刻槽能明显改善界面粘结性能和失效模式。张阳等[12]基于抗剪推出试验研究不同界面处理下的超高性能混凝土与混凝土的抗剪粘结性能,结果表明:凿毛和刻槽界面的试件抗剪承载力最高,而植筋和刻槽界面的试件破坏时延性较好。Al-Madani等[13]研究采用光滑、钻孔和喷砂3种处理方式的超高性能混凝土-混凝土在斜剪、双剪、劈裂抗拉和三点弯曲试验下的粘结性能,结果表明:除了双剪试验,喷砂处理试件的粘结强度高于钻孔试件。上述研究表明,通过对粘结界面采取不同处理方式,改变界面粗糙程度,界面粘结性能均可得到不同程度的改善。但是,上述结论不是在统一控制指标下获得的,且凿毛、喷砂等处理方式的粘结作用机制难以量化;而机械刻槽只由槽深、槽宽和槽间距3个参数确定,能够定量研究各参数的粘结机制 [14-15],此外,课题组前期试验结果表明,采用刻槽方法处理的HSSWM-ECC与混凝土试件的粘结性能明显优于凿毛组[16]。然而,目前国内外研究主要集中于刻槽构造的作用效果,鲜有对其粘结机制进行研究,尤其是对于刻槽连接HSSWM-ECC与混凝土。

    基于此,本文考虑刻槽数量、刻槽深度、钢绞线直径、纵向钢绞线配筋率及ECC强度等刻槽参数与加固基体性能的影响,通过HSSWM-ECC与混凝土梁式试验,分析试件破坏形态、荷载-端部滑移曲线、界面应变分布及各影响因素作用机制等,并建立多参数影响的刻槽构造钢绞线网增强ECC与混凝土界面剥离承载力计算模型。

    与单剪、双剪试验相比,梁式试验可以更真实地反映加固梁界面受力状态,故采用梁式试件对刻槽处理的HSSWM-ECC与混凝土界面粘结性能进行试验研究,其试件设计如图1所示。为了探究刻槽处理方式对HSSWM-ECC与混凝土界面粘结性能的影响,主要考虑了键槽特征(键槽数量(3、4和5道)、槽深(3 mm、5 mm和7 mm))、钢绞线直径(2.4 mm、3.2 mm和4.5 mm)、纵向钢绞线配筋率(0.376%、0.627%和0.877%)和ECC强度等参数,设计制作了12组36个梁式试件,其设计参数见表1所示。表1中试件以“变量-变量参数”命名,如N3试件,N表示键槽数量变化,3为键槽数量;其他组变量基于试件N4确定,如H3,H表示变化量为槽深,3为槽深3 mm;D3.2表示变化量为钢绞线直径,其值为3.2 mm;R表示纵向配筋率变化,T为ECC配方不同。为保证试验结果的有效性,每个编号试件均浇筑3个相同试件。

    图  1  钢绞线网增强工程用水泥基复合材料(HSSWM-ECC)-混凝土试件详图
    Figure  1.  Detail of high-strength steel wire mesh reinforced engineered cementitious composites (HSSWM-ECC)-concrete specimens
    表  1  HSSWM-ECC-混凝土试件设计参数
    Table  1.  Design parameters of HSSWM-ECC-concrete specimens
    Group numberSpecimen numberGroove numberGroove height/mmHSSWR diameter/mmHSSWR ratio/%ECC type
    A A0 0 0 2.4 0.627 Type 1
    N N3 3 5 2.4 0.627 Type 1
    N4 4 5 2.4 0.627 Type 1
    N5 5 5 2.4 0.627 Type 1
    H H3 4 3 2.4 0.627 Type 1
    H7 4 7 2.4 0.627 Type 1
    D D3.2 4 5 3.2 0.878 Type 1
    D4.5 4 5 4.5 0.855 Type 1
    R R3 4 5 2.4 0.376 Type 1
    R7 4 5 2.4 0.877 Type 1
    T T2 4 5 2.4 0.627 Type 2
    T3 4 5 2.4 0.627 Type 3
    Notes: A—Control group; N—Groove number changed group; H—Groove height changed group; D—Strand diameter changed group; R—Longitudinal strand ratio changed group; T—ECC tensile strength changed group.
    下载: 导出CSV 
    | 显示表格

    试验用ECC由粉煤灰、微硅粉、水泥、石英砂、聚乙烯醇(PVA)纤维、水、减水剂和增稠剂拌合形成,其配合比如表2所示。混凝土采用设计强度等级为C40的混凝土,原材料水泥、水、砂、石的比例为1∶0.53∶1.92∶3.41。钢绞线选用规格为2.4 mm、3.2 mm及4.5 mm的小直径钢绞线。为测量各材料力学参数,不同配合比的ECC和不同直径的钢绞线分别预留3个试件,由于混凝土分3批浇筑,每批试件也预留3个伴随试件在同等条件下养护。

    表  2  ECC配合比
    Table  2.  Mix proportion of ECC wt%
    ECC Cement Sand Fly ash Micro silica Water Water reducer Thickener Polyvinyl alcohol (PVA) fiber
    Type 1 1 0.4 3 0.073 1.02 0.0407 0 0.072
    Type 2 1 0.4 3 0.073 1.02 0.0407 0.00182 0.072
    Type 3 1 0.4 3 0.073 1.15 0.0407 0 0.072
    下载: 导出CSV 
    | 显示表格

    试验加载前,对预留混凝土(受压:150 mm×150 mm×150 mm)、ECC (受压:70.7 mm×70.7 mm×70.7 mm;受拉:270 mm×30 mm×13 mm)伴随试块和钢绞线进行材料性能测试[17-18]。其中,混凝土立方体抗压强度平均值为45.72 MPa,标准差为2.11 MPa,ECC和钢绞线具体参数分别列于表3表4图2为ECC受拉应力-应变试验曲线。

    表  3  ECC力学性能结果
    Table  3.  Mechanical properties results of ECC
    ECCCracking strength/MPaCracking strain/%Tensile strength/MPaUltimate tensile strain/%Compressive strength/MPa
    Type 11.8420.0312.5163.58731.2
    Type 21.6060.0552.1073.51226.5
    Type 32.3150.0433.2823.72425.4
    下载: 导出CSV 
    | 显示表格
    表  4  HSSWR力学性能结果
    Table  4.  Mechanical properties results of HSSWR
    Diameter/mmMeasured area/mm2Elastic modulus/GPaUltimate tensile strength/MPaUltimate tensile strain/%
    2.42.82110.3481566.533.195
    3.24.95103.8051581.303.787
    4.59.64 97.7821564.824.108
    下载: 导出CSV 
    | 显示表格
    图  2  ECC拉伸应力-应变试验曲线
    Figure  2.  Tensile stress-strain test curves of ECC

    试验加载装置如图3所示。采用100 kN液压千斤顶以10 N/s的速度加载,直至试件破坏。竖向荷载通过压力传感器自动采集。为量测加载过程中界面应变发展,三排应变片平行粘贴于ECC侧面粘结边缘、非粘结边缘及混凝土底部。考虑课题组前期相关试验中在凹槽附近观测到存在应变集中区,故本次试验在每道凹槽两侧各粘贴一个应变片,以进一步明确该处拉压应变状态变化过程。另外,在自由端和加载端各粘贴一对应变片。ECC侧面测点布置如图3所示。鉴于在自由端HSSWM-ECC层与混凝土相对滑移较小,位移计仅布置于加载端,测量的差值即为界面相对滑移。

    图  3  试验加载装置及测点布置图
    LVDT—Linear variable differential transformer
    Figure  3.  Test loading device and measurement point location

    梁式试件受力模型如图4所示,界面剪力(V)等于HSSWM-ECC层跨中拉力(F),可表示为

    V=F=PL1L22L3 (1)
    图  4  梁式试件受力模型
    Figure  4.  Force model of the beam test specimen

    式中:P为竖向荷载;L1L2L3分别为支座中心、加载点和纵向钢绞线形心至钢铰转动中心的距离,分别取为345 mm、75 mm 和98.6 mm。

    由此,纵向钢绞线名义拉应力σs和界面名义剪应力τa分别为

    σs=FnAs (2)
    τa=Vlb (3)

    式中:n为纵向钢绞线根数;As为单根钢绞线实测截面面积;lb分别为粘结长度和宽度。

    HSSWM-ECC与混凝土界面粘结性能试验试件的破坏形态如图5所示。根据破坏特征和破坏面位置,其破坏模式可归纳为2类:界面剥离破坏(粘结层剥离破坏、混凝土层内剥离破坏、HSSWM-ECC层内剥离破坏)和钢绞线断裂破坏。

    图  5  HSSWM-ECC与混凝土粘结试件破坏模式
    Figure  5.  Failure modes of HSSWM-ECC-concrete specimens

    (1) 粘结层剥离破坏(A类):此模式只发生于非刻槽处理的试件。由于界面是整个加固体系最薄弱的区域,破坏时,HSSWM-ECC层与混凝土均未出现材料层面的损坏,剥离界面较光滑平整,如图5(a)所示。

    (2) 混凝土层内剥离破坏(B类):界面处理或HSSWM-ECC基体性能的提升使界面粘结强度大幅增加,甚至超过混凝土的抗剪强度。随着刻槽处ECC 被剪断,界面薄弱位置即混凝土层内部,发生剥离破坏。因此,该破坏主要出现于界面粘结性能良好的N组、H组及D3.2、R7、T3试件,是试验理想的破坏类型。典型破坏形态如图5(b)所示,刻槽位置处剪切面平整,局部表面附着有1~2 mm厚的混凝土砂浆,且集中分布于第一道槽至第四道槽范围内,表明HSSWM-ECC对混凝土的销钉作用主要集中于前四道槽,第五道槽对刻槽咬合力的贡献较少。值得注意的是,对于H3试件(图5(c)),刻槽处可观察到部分的ECC 剪切残留,说明槽深较浅(小于槽宽)时,刻槽咬合处的ECC会出现从刻槽中“拔出”的现象,界面的锚固效果有所降低。

    (3) HSSWM-ECC层内剥离破坏(C类):破坏时有部分ECC粘附在混凝土表面,此类破坏主要发生于加固层基体性能较差的试件。对于D4.5组,为保证相同的纵向配筋率,其钢绞线直径由2.4 mm增大至4.5 mm,相应的钢绞线根数由7根减至2根,这使纵向钢绞线间距由10 mm变为30 mm,从而削弱了钢绞线网对ECC的约束作用。在荷载作用下,纵向钢绞线间距较远的ECC易出现拉剪破坏。而对于T2组,由于Type 2的ECC材料抗拉性能低于Type 1和Type 3,随着荷载增加,ECC砂浆内部发生断裂,并逐渐传递至自由端。

    (4) 钢绞线断裂破坏(D类):只发生于钢绞线数量较少的R3组,在加载过程中,界面保持可靠粘结,但钢绞线内正应力逐渐超过其极限抗拉强度,发生钢绞线受拉断裂。

    由上述分析可知,刻槽数量、刻槽深度和ECC抗拉强度对HSSWM-ECC与混凝土界面破坏形态影响较显著。此外,对于所有发生界面剥离的试件,在破坏之前并无明显的预兆,属于脆性破坏。

    将各试件粘结性能的力学指标及破坏模式列于表5。其中,Fuτa,p为界面峰值荷载及其对应的峰值粘结应力;σs,p为钢绞线峰值名义拉应力;su为界面最大滑移量。可知:刻槽数量对HSSWM-ECC与混凝土界面粘结性能有较显著的影响,N4试件的τa,p较N3提高了约31%,而N5与N4基本相同,这说明刻槽数量在一定范围内对粘结性能有利。与此相同,在一定范围内增加刻槽深度(3 mm到5 mm),τa,p先增加后趋于稳定。在相同纵向钢绞线配筋率下,增大钢绞线直径,界面粘结强度呈下降趋势。τa,p随纵向钢绞线配筋率的增加而增大,但单根钢绞线名义拉应力σs,p有所下降,表明增加纵向钢绞线配筋率对界面粘结性能的提升还有较大潜力。ECC材料力学性能对粘结界面性能有一定影响,结合表3表5结果,在本试验条件下,τa,p随ECC 抗拉强度的增大而增大。

    表  5  HSSWM-ECC与混凝土粘结试件试验结果
    Table  5.  Test results of HSSWM-ECC-concrete specimens
    Specimen numberFu/kNτa,p/MPaσs,p/MPasu/mmFailure mode
    A0-1 4.24 0.39 300.71 0.0645 A
    A0-2 4.42 0.41 313.48 0.0620 A
    A0-3 3.68 0.34 260.99 0.0558 A
    N3-1 10.21 0.95 724.11 0.1365 B
    N3-2 11.64 1.08 825.40 0.1442 B
    N3-3 11.96 1.11 848.55 0.1576 B
    N4-1 15.18 1.41 1076.60 0.1190 B
    N4-2 14.27 1.32 1012.06 0.0830 B
    N4-3 14.85 1.38 1053.19 0.1070 B
    N5-1 15.69 1.45 1112.77 0.0970 B
    N5-2 B
    N5-3 14.94 1.38 1059.57 0.0850 B
    H3-1 10.63 0.98 754.07 0.1726 B
    H3-2 10.66 0.99 756.03 0.1651 B
    H3-3 9.72 0.90 689.36 0.1789 B
    H7-1 15.31 1.42 1085.82 0.0920 B
    H7-2 14.90 1.38 1056.74 0.1043 B
    H7-3 13.86 1.28 982.98 0.1279 B
    D3.2-1 14.71 1.36 743.16 0.1093 B
    D3.2-2 16.52 1.53 834.34 0.1155 B
    D3.2-3 16.98 1.57 857.59 0.1263 B
    D4.5-1 14.49 1.34 751.56 0.1171 C
    D4.5-2 14.73 1.36 763.78 0.1252 C
    D4.5-3 15.32 1.42 794.61 0.1535 C
    R3-1 11.44 1.06 1352.01 0.1213 D
    R3-2 12.23 1.13 1445.21 0.1281 D
    R3-3 10.75 1.00 1271.05 0.1451 D
    R7-1 16.63 1.54 842.55 0.0863 B
    R7-2 17.71 1.64 897.34 0.0825 B
    R7-3 16.47 1.53 834.57 0.0950 B
    T2-1 12.41 1.15 880.40 0.1117 C
    T2-2 13.54 1.25 960.51 0.1240 C
    T2-3 13.16 1.22 933.56 0.1290 C
    T3-1 16.51 1.53 1170.59 0.0882 B
    T3-2 16.20 1.50 1148.97 0.0844 B
    T3-3 15.68 1.45 1111.80 0.0914 B
    Notes: Fu—Ultimate load; τa,p—Interface peak bond stress; σs,p—Peak nominal tension of longitudinal HSSWR; su—Maximum slip; A—Peeling failure in interface; B—Peeling failure in concrete layer; C—Peeling failure in HSSWM-ECC layer; D—Strand fracture damage.
    下载: 导出CSV 
    | 显示表格

    由试验结果可知,各试件均发生界面剥离及钢绞线断裂的脆性破坏,故在试验过程中试件达到峰值荷载后迅速破坏,未能获得曲线下降段。各工况典型的荷载-滑移曲线,如图6所示。可以看出,刻槽界面处理试件的界面承载力、粘结刚度及破坏时的滑移量较未处理界面试件均有较大增幅。这表明刻槽处理是提高界面粘结性能的有效方式。

    图  6  HSSWM-ECC与混凝土粘结试件典型荷载-滑移曲线
    Figure  6.  Typical load-slip curves of HSSWM-ECC-concrete specimens

    图6可以看出,刻槽试件的荷载-滑移曲线呈现出两个阶段的特点:微滑移段和滑移段。

    (1) 微滑移段OA:加载初期,荷载随加载端滑移线性增长, HSSWM-ECC层与混凝土协同工作,界面粘结范围内无微裂缝产生。随着荷载继续增加,混凝土层内出现微裂缝,并不断延伸。由于刻槽对混凝土内裂缝发展的约束作用,粘结刚度虽然有所降低,但总体仍处于较高水平。

    (2) 滑移段AB:随着荷载继续增加至极限荷载的80%左右时,部分微裂缝贯通键槽底部,粘结刚度出现明显退化。HSSWM-ECC层与混凝土相对滑移明显增大,直至槽被完全剪断或拔出,试件破坏。

    图7为刻槽处理试件在粘结长度范围内各应变测点应变分布图。如图7(a)所示,在有效粘结长度范围内,界面未处理试件(A0)整体上应变由加载端向自由端递减,此结果与文献[19-20]结论一致。加载初期,应变增长速率较慢,仅加载端附近测点处应变值有较大增长;之后,伴随着荷载的增加,自由端附近测点处应变值亦开始加速增长直至试件破坏。

    图  7  HSSWM-ECC-混凝土粘结试件粘结范围内各测点应变分布情况
    Figure  7.  Strain distribution of measured points along bond length of HSSWM-ECC-concrete specimens

    图7(b)可知,刻槽试件应变也是从加载端向自由端逐渐减小,但不同于A0试件,其在粘结长度内均产生应变,且刻槽两侧拉压应变交替,出现应力集中现象。分析原因:刻槽处理改变了界面粘结力组成,使机械咬合力占比明显增加,应变分布主要体现出键槽咬合力的作用,即加载时咬合齿共同抵抗界面剪切荷载。

    将不同刻槽数量试件(N3、N4和N5)的荷载-滑移曲线绘于图8。可以看出,随着刻槽数量的增加,界面承载力先增加后保持稳定;而对应的滑移值则随刻槽数量的增加不断减少。此外,随刻槽数量的增加,图中曲线的初始斜率逐渐增大。分析原因:刻槽位置由自由端至加载端依次确定,故刻槽数量最多的N5试件加载端与最近槽的距离最短,凹槽最先产生“锚固”作用,因此其界面粘结刚度最大。

    图  8  N组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线
    Figure  8.  Load-slip curves of HSSWM-ECC-concrete specimens in group N

    为了进一步分析刻槽数量对界面粘结性能的影响规律,将相关试件的界面剥离荷载及其对应的滑移量与刻槽数量的关系绘于图9。可以看出,相较于非刻槽处理的试件,仅N3试件的界面剥离荷载就显著提高了174%;且随刻槽数量的增加仍能获得较大提高。在界面粘结长度相同时(本试验为120 mm),N4和N5试件的剥离荷载基本相当,约为15 kN。对于非刻槽处理试件,由于其破坏时荷载较小,故其最大滑移量较刻槽试件偏小。但相同荷载下的滑移量随刻槽数量的增多而减小。上述分析结果表明:界面刻槽处理可提高钢绞线网/ECC与混凝土的界面承载能力,但刻槽数量在一定范围(刻槽参与总受力宽度小于20 mm)内效果明显;但对滑移却是负相关的关系。分析原因:刻槽是通过增加材料间的机械咬合力来提高界面承载力的,但受材料性能的限制,在加载过程中,能够发挥作用的刻槽宽度是有限的,超过有效宽度后,继续增加刻槽数量,界面承载力不再提高,类似于有效锚固长度的原理。而端部滑移由HSSWM-ECC层的受拉伸长与材料间的相对位移两部分组成,由于HSSWM-ECC层拉伸变形较小,端部滑移主要是由材料间的相对位移提供,在具有一定数量的刻槽后,继续增加刻槽,会加强材料间的“锚固”作用,约束了材料间的相对位移,使滑移量有所降低。

    图  9  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与刻槽数量的关系曲线
    Fu—Interfacial bearing capacity; su—Maximum slip
    Figure  9.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the number of grooves

    图10为不同刻槽深度(3 mm、5 mm和7 mm)试件的荷载-滑移试验曲线。可以看出,N4(5 mm)和H7(7 mm)试验曲线变化趋势基本一致,界面剥离荷载约为15 kN。而H3(3 mm)试件的剥离荷载和界面粘结刚度明显较低,这说明刻槽深度对界面粘结性能影响显著。

    图  10  H组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线
    Figure  10.  Load-slip curves of HSSWM-ECC-concrete specimens in group H

    图11为相关试件界面剥离荷载及其对应端部滑移量与刻槽深度的关系曲线。可以看出,刻槽深度由3 mm增至5 mm,其界面剥离荷载提高了约43%,而对应滑移量则降低了约40%。但随着刻槽深度继续增加,二者均无明显变化。分析原因:槽深较浅时,刻槽处ECC被“拔出”而破坏,无法充分发挥HSSWM-ECC层的力学性能,导致界面峰值荷载有明显降低,也使界面滑移明显增大。上述分析表明:刻槽深度在一定范围内(槽深5 mm内)增加,可提高界面承载力和粘结刚度,使机械咬合力充分发挥。

    图  11  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与刻槽深度的关系曲线
    Figure  11.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the height of grooves

    图12为相同配筋率下不同纵向钢绞线直径(2.4 mm、3.2 mm和4.5 mm)试件的荷载-滑移试验曲线。可以看出,加载初期,各试件的荷载-滑移曲线基本一致。这是由于此阶段钢绞线网还未发挥作用,界面荷载全部由ECC承担。随着ECC开裂,界面粘结刚度随钢绞线直径增大而降低。

    图  12  D组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线
    Figure  12.  Load-slip curves of HSSWM-ECC-concrete specimens in group D

    图13为相关试件的界面剥离荷载及其对应端部滑移与钢绞线直径的关系曲线。可以看出,钢绞线直径与界面剥离荷载呈负相关;与滑移量呈正相关,且均近似为线性关系。其中,D4.5 (4.5 mm)试件的剥离荷载较R7 (2.4 mm)试件降低了约12%,而对应的滑移量增加了约50%。这表明,钢绞线直径的增大会降低界面粘结性能。分析原因:刻槽咬合处的ECC 受拉开裂后,荷载由钢绞线网承担;为保证相同的配筋率,随着钢绞线直径的增大,需求的钢绞线数量减少,从而使钢绞线的间距增大,对ECC约束作用削弱,进而钢绞线间ECC容易出现拉剪破坏,界面承载力有所降低。此外,钢绞线对ECC的约束作用的降低也导致材料间的锚固性能有所降低,使其在相同荷载作用下,界面滑移增大。

    图  13  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与钢绞线(HSSWR)直径的关系曲线
    Figure  13.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the diameter of high-strength steel wire rope (HSSWR)

    图14为钢绞线直径为2.4 mm,纵向钢绞线配筋率不同试件(0.376%、0.627%和0.877%)的荷载-滑移试验曲线。可以看出,加载初期,配筋率较低的R3试件的滑移量增长速率较快;随着荷载增加,N4试件曲线斜率变化明显,与R3试件曲线斜率接近;当荷载约为12 kN时,R3试件达到峰值荷载前出现滑移大幅增长阶段。与之相比,试件R7整个加载过程中荷载-滑移曲线基本保持上升趋势。分析原因:R3试件配筋率较低(0.376%,3根),对ECC的约束较差,故在相同荷载下产生较大的滑移;且在界面剥离破坏前,钢绞线达到极限抗拉强度,发生钢绞线断裂破坏。而N4试件在ECC开裂失效后,界面粘结刚度减小至与R3试件相近,类似地,R7试件在突变后的粘结刚度接近N4试件,表明钢绞线网主要通过限制ECC裂缝的开展发挥作用。

    图  14  R组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线
    Figure  14.  Load-slip curves of HSSWM-ECC-concrete specimens in group R

    图15为不同钢绞线配筋率与各试件界面峰值荷载及其对应端部滑移的关系曲线。可以看出,界面峰值荷载及其滑移与钢绞线配筋率基本呈线性关系。R7试件的峰值荷载较R3试件提高了约48%,而相应滑移量降低了约33%。这表明增大钢绞线配筋率有利于改善界面粘结性能。

    图  15  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与钢绞线配筋率关系曲线
    Figure  15.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the ratio of HSSWR

    通过改变水胶比和增稠剂含量来制备不同强度的ECC,图16图17分别为ECC抗拉强度不同时各试件的荷载-滑移试验曲线及ECC抗拉强度与界面剥离荷载及其滑移的关系曲线。可以看出,随着ECC抗拉强度的提高,试件的界面剥离荷载随之提高,而对应的滑移相应降低。其中,T3试件的剥离荷载较T2试件增大了约24%,而滑移则相应降低了约28%。这是由于ECC基体性能显著影响着化学胶结力,且较高的抗拉强度使其在凹槽处不易被剪断,从而提高了材料间的机械咬合力。上述结果表明,ECC抗拉强度的提高有利于界面粘结,故其也是影响界面粘结性能的重要参数。

    图  16  T组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线
    Figure  16.  Load-slip curves of HSSWM-ECC-concrete specimens in group T
    图  17  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与ECC抗拉强度关系曲线
    Figure  17.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and ECC tensile strength

    未经机械刻槽处理的试件,其界面粘结力主要由化学胶结力、摩阻力和机械咬合力三部分组成。其中,化学胶结力是由水化反应过程中骨料与水泥浆体的化学键结合而形成,其主要来源有:(1) ECC中的胶凝材料与基体混凝土中水化产物发生化学反应后产生的吸附作用;(2) ECC中的胶凝材料与基体混凝土孔隙中的骨料化学反应后产生的吸附作用。化学胶结力的大小受ECC 及基体混凝土水泥的力学性能及粘结面积影响较大。摩阻力与机械咬合力则主要受界面粗糙程度影响,浇筑后的混凝土表面不可避免的会产生“凹凸”缺陷,进一步浇筑ECC后,这些局部“凹凸”会形成咬合齿。在界面荷载的作用下,发挥机械咬合作用与摩阻作用。上述三部分作用中,化学胶结力是界面粘结力的主要来源;而摩阻力与机械咬合力由于其存在较强的不确定性和不稳定性,且部分依赖于化学胶结力而存在,因而属于次要部分。该类界面的受力模型如图18(a)所示。

    图  18  HSSWM-ECC-混凝土粘结试件界面粘结机制
    Figure  18.  Interfacial bonding mechanism of HSSWM-ECC-concrete specimens

    界面经机械刻槽处理后,其界面粘结力仍为化学胶结力、摩阻力和机械咬合力。其中,化学胶结力和摩阻力的形成机制未发生改变,其所能提供的界面粘结力也基本保持稳定。而刻槽的设置使材料间的“咬合”作用更加显著,其成为此类界面粘结力的主要来源。此类界面的受力模型如图18(b)所示。

    由上述界面粘结作用机制分析可知,未经机械刻槽处理的界面,其界面粘结力主要以化学胶结力为主。因此,此类界面的粘结力主要与界面粘结长度l、宽度b和材料强度有关。其中,材料强度主要与ECC 抗拉强度有关。原因在于:在既有混凝土表面浇筑ECC,其界面化学胶结力主要由ECC 水泥浆体的凝结、硬化形成,且粘结界面主要受剪切荷载作用。因此取ECC 抗拉强度fet为强度特征值,以FB=g(b, l, fet)为目标函数,对A0组数据进行拟合。得到FB的计算公式如下:

    FB=0.15blfet (4)

    刻槽界面的粘结力由化学胶结力、摩阻力和机械咬合力组成,故该类界面承载力Fu可在未刻槽界面的基础上,考虑键槽形成的“咬合力”,即下式所示:

    Fu=FB+FG (5)

    式中:FB为未刻槽界面的承载力,采用式(4)计算;FG为刻槽提供的机械咬合力,主要与刻槽特征和材料性能有关。其中,刻槽数量N与宽度wG是通过改变刻槽参与受力总宽度(wGZ=NwG)来影响界面承载力的。由试验结果分析可知,界面参与受力的总宽度存在一个限值,称为有效受力宽度wGE。钢绞线直径、纵向钢绞线配筋率及ECC强度均是通过改变HSSWM-ECC的材料性能来影响界面承载力。因此建立FG的计算模型:

    FG=KGbwGEβwβhfse (6)

    式中:KG为综合调整系数;b为刻槽长度,同界面粘结宽度;wGE为界面刻槽沿受力方向上的有效宽度,由于N4与N5试件界面峰值荷载接近,且如图5所示,第5道槽对刻槽咬合力的贡献较少,本文取wGE=20 mm(4道槽,单槽宽5 mm)进行计算;βw为界面刻槽参与受力宽度的影响系数;βh为界面刻槽深度的影响系数;fse为HSSWM-ECC层的抗拉强度特征值。

    由试验结果分析可知,界面粘结性能与ECC抗拉强度、钢绞线直径及钢绞线配筋率均有关。而HSSWM-ECC 作为一种复合材料,可认为上述因素是其性能的综合体现。因此,为了综合考虑上述因素对界面承载力的影响,采用HSSWM-ECC层的抗拉强度特征值fse来进行表征,其计算模型如下式所示:

    fse=kf[nAsbtσstβlg+fet] (7)

    式中:kf 为强度调整系数;As为纵向单根钢绞线截面积;n为纵向钢绞线根数;bt分别为加固层的宽度和厚度;σst为钢绞线极限拉伸强度;βlg为钢绞线间距的影响系数;fet为 ECC 极限拉伸强度。

    由于式(7)中计算变量较多,可分步处理以确定式中参数。首先,以相同钢绞线直径、间距试件的试验数据,拟合出kf,其值为0.82;同理,确定βlg 的计算公式,如下式所示:

    βlg=0.545(l2.4lg)+0.455[0,1] (8)

    式中:lg为纵向钢绞线间距;l2.4为基准间距,本文为15 mm。

    进而对槽宽、槽深分别影响FG进行拟合计算,得到界面刻槽受力宽度、深度影响系数的计算公式,如下式所示:

    βw=wGZwGE (9)
    βh=hGwG (10)

    式中, hGwG分别表示为刻槽的深度和宽度。

    以N3、N4、H3、D3.2、R3、R7、T3试件为拟合组,对其数据进行线性回归分析,得到拟合参数KG=0.545。拟合结果如图19 所示,回归直线相关系数COD=0.989。

    图  19  HSSWM-ECC-混凝土粘结试件综合调整系数KG回归分析
    FG—Test value of mechanical bite force provided by grooves; KG—Comprehensive adjustment coefficient of mechanical bite force
    Figure  19.  Regression analysis of adjustment coefficient KG of HSSWM-ECC-concrete specimens

    通过上述计算分析,HSSWM-ECC与混凝土刻槽处理的界面承载力预测模型如下式所示:

    {Fu=FB+FGFB=0.15blfetFG=0.545bwGEβwβhfse (11)

    为了验证本文所提界面承载力预测模型的精确性,以D4.5、T2、H7 和N5组试件的试验数据为验证组,其计算结果与试验结果如表6 所示。其中,试验值与预期界面承载力值之比的平均值为0.986,变异系数为0.069,预期值与试验值吻合良好,具有较高的精度。由于制作误差造成的各试件力学性能不尽相同,且试验误差无法完全消除,部分试件预测值与实测值存在差异。

    综上所述,该模型对于高强钢绞线网增强ECC与混凝土刻槽界面剥离承载力预测具有较好的适用性。

    表  6  HSSWM-ECC-混凝土粘结试件界面承载力预测模型验证结果
    Table  6.  Validation results of bearing capacity prediction model of HSSWM-ECC-concrete specimens
    Group numberSpecimen numberTest data/kNCalculated value/kNTest data/Calculated value
    D4.5D4.5-114.4913.951.039
    D4.5-214.7313.951.056
    D4.5-315.3213.951.098
    T2T2-112.4113.010.954
    T2-213.5413.011.041
    T2-313.1613.011.012
    N5N5-115.6916.480.952
    N5-2
    N5-314.9416.480.907
    H7H7-115.3115.810.968
    H7-214.9015.810.942
    H7-313.8615.810.876
    下载: 导出CSV 
    | 显示表格

    (1) 高强钢绞线网增强工程用水泥基复合材料(HSSWM-ECC)与混凝土界面粘结性能梁式试验中,各试件主要发生两类破坏模式:界面剥离破坏和钢绞线断裂破坏。其中,界面剥离损伤破坏面位置受刻槽数量、刻槽深度和工程用水泥基复合材料(ECC)抗拉强度影响。

    (2) 刻槽界面沿粘结范围内的应变分布整体呈现自加载端向自由削弱传递的现象,且刻槽附近出现应力集中。

    (3) 在一定范围内(刻槽参与受力总宽度20 mm及槽深5 mm范围内),界面峰值荷载随刻槽数量和刻槽深度的增加而增大,破坏时的最大滑移量则与之相反。这表明键槽特征(键槽数量、槽深)对界面粘结性能影响较大。

    (4) 界面峰值荷载与钢绞线配筋率和ECC抗拉强度呈线性正相关,而与其对应的滑移量呈线性负相关。这表明HSSWM-ECC层的设计能改善其与混凝土界面粘结性能。

    (5) 基于刻槽界面粘结机制分析,建立了考虑界面键槽特征(刻槽数量、槽深)及HSSWM-ECC层强度特征(钢绞线配筋率、钢绞线直径、ECC抗拉强度等)的界面抗剪承载力预测模型。通过验证组对比分析,所提预测模型与试验结果吻合良好。

  • 图  1   3种典型真菌原料的SEM图像:(a)香菇石蜡切片显微结构图[19];(b)木耳的SEM图像[20];(c)酵母菌的FESEM图像[21]

    Figure  1.   SEM images of three typical fungal raw materials: (a) Microstructure of paraffin sections of lentinus edodes[19]; (b) SEM image of auricularia auriculata[20]; (c) FESEM diagram of Yeast[21]

    图  2   3种典型真菌碳化后SEM图像:(a)碳化香菇结构[22];(b)木耳碳化结构[20];(c)酵母菌结构[23]

    Figure  2.   SEM images of three typical fungi after carbonization: (a) Structure of carbonized shiitake mushrooms[22]; (b) Carbonized structure of fungus[20]; (c) Yeast structure[23]

    图  3   部分真菌类复合材料微观形貌:(a) FeCo@C@香菇生物质衍生碳 (BDC) [25];(b) Co/木耳BDC[26];(c) CoNiO2@酵母菌BDC[28]

    Figure  3.   Microstructure of some fungal composites: (a) FeCo@C@lentinus edodes biomass derived carbon (BDC)[25]; (b) Co/Fungus BDC[26]; (c) CoNiO2@Yeast BDC[28]

    图  4   部分真菌类复合材料的反射损耗 (RL):(a) FeCo@C@香菇BDC[25];(b) Co/木耳BDC[26];(c) CoNiO2@酵母菌BDC[28]

    Figure  4.   Reflection loss (RL) of some fungal composite materials: (a) FeCo@C@lentinus edodes BDC[25]; (b) Co/Fungus BDC[26]; (c) CoNiO2@Yeast BDC[28]

    图  5   泥炭藓的SEM图像:(a)叶片;(b)茎[31];(c) BDC [32]

    Dstem—Diameter stem; Sstem—Speration stem

    Figure  5.   SEM images of sphagnum moss: (a) Leaves; (b) Stem[31]; (c) BDC[32]

    图  6   泥炭藓BDC复合材料的SEM图像:(a) Ni/BDC;(b) Fe3O4/BDC[33]

    Figure  6.   SEM images of BDC composite of sphagnum moss: (a) Ni/BDC;(b) Fe3O4/BDC[33]

    图  7   泥炭藓BDC复合材料的RL:(a) Ni/BDC;(b) Fe3O4/BDC[33]

    Figure  7.   RL of composite of sphagnum moss BDC: (a) Ni/BDC;(b) Fe3O4/BDC[33]

    图  8   银杏叶的SEM图像:(a)叶表面[34];(b) BDC[35]

    Figure  8.   SEM images of Ginkgo Biloba leaves: (a) Leaf surface[34]; (b) BDC[35]

    图  9   银杏叶碳基复合材料的SEM图像: (a)横截面;(b)轴向截面;(c) CaS[36]

    Figure  9.   SEM images of Ginkgo Biloba leaf carbon matrix composites: (a) Cross section; (b) Axial section; (c) CaS[36]

    图  10   CaS/银杏叶衍生碳复合材料的RL[36]

    Figure  10.   RL of CaS/Ginkgo Biloba BDC composites[36]

    图  11   杉木的横截面SEM图像:(a)未碳化[37];(b) BDC [38]

    Figure  11.   Cross-section SEM images of Chinese fir: (a) Uncarbonized[37];(b) BDC [38]

    图  12   松木SEM图像:(a)管胞纹孔;(b)细胞壁径切面[39];(c) BDC [40]

    Figure  12.   SEM images of pine: (a) Tracheid pit; (b) Diameter section of cell wall[39]; (c) BDC[40]

    图  13   Fe3O4/松木BDC复合材料的RL [40]

    WPC—Wood porous carbon

    Figure  13.   RL of Fe3O4/pinewood BDC composites[40]

    图  14   NiFe/杉木BDC的SEM图像[41]

    Figure  14.   SEM image of NiFe/fir BDC[41]

    图  15   NiFe/杉木BDC的RL[41]

    Figure  15.   RL of NiFe/fir BDC[41]

    图  16   松木BDC显微结构图:(a) 组织SEM;(b) Ni/BDC的SEM;(c) HRTEM[43]

    Figure  16.   BDC microstructure of pine: (a) Microstructure SEM; (b) SEM of Ni/BDC; (c) HRTEM[43]

    图  17   Ni/松木BDC的RL[43]

    Figure  17.   RL of Ni/pine BDC[43]

    图  18   松果壳BDC的SEM图像[45]

    Figure  18.   SEM image of pinecone shell BDC[45]

    图  19   活化松果BDC的SEM图像[46]

    Figure  19.   SEM image of activated pine cone BDC[46]

    图  20   松果壳BDC的电磁波吸收性能:(a) RL;(b) EAB[46]

    PC—Porous carbon

    Figure  20.   Electromagnetic wave absorption performance of pine shell BDC: (a) RL; (b) EAB[46]

    图  21   秸秆的SEM图像:(a)未活化BDC[47];(b)活化BDC [48]

    Figure  21.   SEM images of straw: (a) Inactive BDC[47]; (b) Activating BDC [48]

    图  22   马齿苋复合材料的SEM图像:((a), (b)) BDC;(c) Co@BDC[49]

    BPC—Biomass porous carbon

    Figure  22.   SEM images of Purslane composite material: ((a), (b)) BDC; (c) Co@BDC[49]

    图  23   Co@马齿苋BDC复合材料的RL [49]

    Figure  23.   RL of Co@Purslane BDC composite material[49]

    图  24   高粱秸秆(Fe, Ni)/BDC复合材料的 SEM (a)和TEM (b) 图像[50]

    Figure  24.   SEM (a) and TEM (b) images of Sorghum straw (Fe, Ni)/BDC composite material[50]

    图  25   (Fe, Ni)/高粱秸秆BDC的RL [50]

    P, L, S—Electromagnetic wave band

    Figure  25.   RL of (Fe, Ni)/sorghum straw BDC[50]

    图  26   稻壳的SEM图像:(a)生稻壳;(b)活化BDC[52];(c) 生椰壳;(d) 椰壳BDC[57]

    Figure  26.   SEM images of rice husk: (a) Raw rice husk; (b) Activated BDC[52]; (c) Raw coconut husk; (d) Coir BDC[57]

    图  27   NiCo2/BDC复合材料的SEM图像[54]

    Figure  27.   SEM image of NiCo2/BDC composites[54]

    图  28   稻壳衍生碳复合材料的RL:(a) Fe3O4/BDC[53];(b) NiCo2/BDC[54];(c) BDC [55]

    Figure  28.   RL of rice husk derived carbon composites: (a) Fe3O4/BDC[53]; (b) NiCo2/BDC[54]; (c) BDC [55]

    图  29   部分原生生物的显微结构:(a)螺旋藻显微镜图像[59];((b), (c))紫菜碳SEM图像 [61];(d)海带碳SEM图像[64]

    Figure  29.   Microstructure of some protists: (a) Microscopic image of Spirulina[59]; ((b), (c)) SEM images of laver carbon[61]; (d) SEM image of kelp carbon[64]

    图  30   部分原生生物类复合材料的SEM图像:((a), (b)) Fe3O4@螺旋藻BDC[59];(c) NiCo2O4/紫菜BDC[61];(d) NiO-NixSy@海带BDC [64]

    Figure  30.   SEM images of some protist composites: ((a), (b)) Fe3O4@Spirulina BDC[59]; (c) NiCo2O4/laver BDC[61]; (d) NiO-NixSy@kelp BDC[64]

    图  31   部分原生生物类复合材料的RL:(a) Fe3O4@螺旋藻BDC [54];(b) Ni@紫菜BDC[62];(c) NiO-NixSy@海带BDC[64]

    Figure  31.   RL of some protist composites: (a) Fe3O4@Spirulina BDC[54]; (b) Ni@laver BDC [62];(c) NiO-NixSy@kelp BDC[64]

    图  32   复合吸波材料统计图:(a) RLmin[24-25, 27-29, 32-33, 36, 40-43, 45, 48-49, 52, 54-55, 59-63];(b) EAB[24-26, 28, 41-43, 49-50, 55, 62-63]

    Figure  32.   Statistical diagram of composite absorbing materials: (a) RLmin[24-25, 27-29, 32-33, 36, 40-43, 45, 48-49, 52, 54-55, 59-63]; (b) EAB[24-26, 28, 41-43, 49-50, 55, 62-63]

    图  33   不同热解温度的香菇衍生碳基复合材料的吸波性能: (a) 600℃;(b) 650℃;(c) 700℃[24]

    Figure  33.   Absorption properties of lentinus edode-derived carbon-based composites at different pyrolysis temperatures: (a) 600℃; (b) 650℃; (c) 700℃[24]

    图  34   不同热解温度的稻壳衍生碳基复合材料的吸波性能:(a) 600℃;(b) 650℃;(c) 700℃[57]

    Figure  34.   Absorption properties of rice husk-derived carbon-based composites at different pyrolysis temperatures: (a) 600℃; (b) 650℃; (c) 700℃[57]

    图  35   不同热解温度的木质衍生碳基复合材料的吸波性能:(a) 630℃;(b) 650℃;(c) 670℃;(d) 690℃[42]

    Figure  35.   Absorption properties of pinewood-derived carbon-based composites at different pyrolysis temperatures: (a) 630℃; (b) 650℃; (c) 670℃; (d) 690℃[42]

    图  36   不同热解温度的紫菜衍生碳基复合材料吸波性能:(a) 650℃;(b) 700℃;(c) 750℃;(d) 800℃[61]

    Figure  36.   Absorption properties of pinewood-derived carbon-based composites at different pyrolysis temperatures: (a) 650℃; (b) 700℃; (c) 750℃; (d) 800℃[61]

    表  1   真菌类生物质的结构与成分

    Table  1   Structure and composition of fungal biomass

    Biomass species Heteroelement/(μg·g−1) Structural molecule Pore size scope/μm Porosity/%
    Mushroom P: 0.63-1.05
    Fe: 27.5-215
    Zn: 49.4-85.8
    Chitin, cellulose,
    hemicellulose
    Tissue holes: 10-200 μm
    Cell wall pit: 0.9-2.7 μm
    59.0
    Agaric P: 1305.35-2430.59
    Fe: 83.76-110.62
    Zn: 26.58-51.76
    62.9
    Yeast P: 1.6wt%-3.5wt%
    Fe: 90-350
    Zn: 100-160
    Plasmodesma:
    30-60 nm
    下载: 导出CSV

    表  2   部分真菌类生物质衍生碳复合材料的结构与成分

    Table  2   Structure and composition of partial fungal biomass derived carbon composites

    BDC species Heteroelement
    species
    Carbonization
    temperature/℃
    Degree of graphitization Pore size
    scope/nm
    BET surface
    area/(m2·g−1)
    Pore volume/
    (cm3·g−1)
    Ref.
    Mushroom P, Fe 700 0.92 [24]
    800 0.97 9.10 81.6 0.22 [25]
    800 5.27 1631 0.07 [21]
    Agaric 800 1.02 5.60 193 0.25 [26]
    800 1.06 3.93 173 [27]
    800 0.89 [29]
    800 2.95 2.6-5.0 571 0.33 [22]
    Yeast Fe 900 0.92 6.90 89.6 0.04 [28]
    900 1.05 [30]
    Note: BET—Brunauer Emmett Teller.
    下载: 导出CSV

    表  3   真菌生物质衍生碳基复合吸波材料的微波吸收性能

    Table  3   Microwave absorption performance of fungal biomass derived carbon-based composite absorbing materials

    Precursor material Amount of fill/wt% Absorbers Thickness/
    mm
    Frequence/
    GHz
    RLmin/
    dB
    EAB/
    GHz
    Distribution area of
    EAB/GHz
    Ref.
    Mushroom 50 Fe/Fe4N/BDC 5
    4
    4.8 −30.3 6.64 4.00-10.64 [24]
    FeCo@C@BDC 2.9 12.2 −69.5 8.60 9.4-18 [25]
    Agaric 30 Co/BDC 2.8 8.56 −52.6 5.44 11.84-17.28 [26]
    50 BDC@NiCo2O4 4.09 −54.6 [27]
    1.85 5.70 9.9-15.6
    50 Fe/Fe3O4/BDC 2.06 9.63 −30.4 2.45 9.58-12.37 [28]
    Yeast 20 CoNiO2@BDC 4 6.56 −44.0
    4.5 7.04 [29]
    40 Mo2C@N/P 2.5 12.4 −50.6 5.40 10.5-15.9 [30]
    Notes: RLmin—Reflectionloss minimum; EAB—Effective absorption bandwidth.
    下载: 导出CSV

    表  4   植物类生物质的结构与成分

    Table  4   Structure and composition of plant biomass

    Biomass Heteroelement element/(μg·g−1) Structural molecule Pore size scope Porosity/% Ref.
    Part Species
    Leaf Ginkgo Fe: 340; Zn: 30; P: 250 Lignin; Cellulose;
    Hemicellulose
    Cell pit: 1.2 μm;
    Capillary: 0.1-25 μm
    [34]
    Peatmoss P: 1.04; Zn: 415.8 [31]
    Shell Pinecone N: 3.78 (wt%) Cell pit: 1.2 μm;
    Pore: 2.41 nm
    [45]
    Rice-hull P: 289; Fe: 37;
    Zn: 14; Si: 40
    [52]
    Stems Fir N: 0.1 -0.2 (wt%) 26.03 μm 58.46 [39]
    Pine Ash content: 0.2-1.7(wt%) Capillary: 1-10 nm;
    Cell pit: 0.1-0.7 μm;
    Average: 1.466 nm
    78.39 [37]
    Wheat-straw N: 1.12 (wt%);
    S: 0.25 (wt%)
    14.79 nm 27.2 [47]
    Purslane Fe: 154.5; Zn: 177.1 Cell pit 1.2 μm [43]
    下载: 导出CSV

    表  5   植物类生物质衍生碳复合材料的结构与成分

    Table  5   Structure and composition of plant biomass derived carbon composites

    BDC Heteroelement element Carbonization
    temperature/℃
    ID/IG Pore size
    scope/nm
    BET surface
    area/(m2·g−1)
    Ref.
    Part Species
    Leaf Ginkgo S, P 700 1.08 [36]
    800 1.10 1.4-1.6/2.2/4 2103 [35]
    Peatmoss Fe, Zn, P 800 1.01 1.1/1.7-3.5 350 [32]
    800 0.98 5/7/15/25 1861 [33]
    Shell Pinecone N 800 0.85 1.07 [45]
    Rice-hull P 600 1.7-2.6/4 941.98 [53]
    600 0.41 4-10 82.23 [54]
    600 1.75 3.5 666.14 [56]
    Stems Fir N 1000 1.66 19.2-24.8 μm [41]
    1000 1.01 [42]
    900 1.06 681.63 [37]
    Pine 670 10-20 μm [40]
    1400 1.58 2 [43]
    Purslane Fe, Zn 650 1.82 [49]
    Wheat-straw N 600 0.95 12.5-30 654.23 [48]
    下载: 导出CSV

    表  6   植物生物质衍生碳基复合吸波材料的微波吸收性能

    Table  6   Microwave absorption performance of plant biomass-derived carbon-based composite absorbing materials

    Precursor
    material
    Amount of fill/wt% Absorber Thickness/
    mm
    Frequence/
    GHz
    RLmin/
    dB
    EAB/
    GHz
    Distribution area of
    EAB/GHz
    Ref.
    Peatmoss 40 Ni/BDC 2.4 8.7 −52 2.6 7.3-9.9 [32]
    Ni/BDC 2.4 9.4 −52 2.6
    40 Fe3O4/BDC 1.6 14.2 −51.6 4.1 [33]
    Ginkgo-leaf 30 CaS/BDC 2.0 9.6 −15.47 2.08 [36]
    Fir 10 CoFe/BDC 2.4 12.2 −54.4 2.6 9.7-12.3 [41]
    2.2 1.9 −53.6 4.2 8.2-12.4 [42]
    Pine 20 Fe3O4/BDC 3.2 12.16 −49.5 6.24 9.04-15.28 [40]
    20 Ni/BDC 5.7 6.00 −50.38 3.76 6.4-10.16 [43]
    Pinecone 16.7 BDC 2.1 15.36 −76.0 [45]
    2.3 5.92 11.92-17.84
    Purslane 10 Co@BDC/CoO 2.5 14.0 −43.09 6.75 11.25-18 [49]
    Wheat-straw 10 BDC 2.5 12.1 −37 8.8 7.2-16 [48]
    40 (Fe,Ni)/BDC 1 0.81 −46.36 1.92 0.89-2.81 [50]
    Rice-hull 40 Fe3O4/BDC 2.39 10.8 −51.73 [53]
    30 NiCo2/BDC 3.57 6.32 −55.62 [54]
    10 BDC 2.8 9.796 −47.46 3.40 8.47-11.87 [55]
    Coconut shell 10 BDC 2.5 −30.5 5.20 [56]
    下载: 导出CSV

    表  7   部分原生生物类生物质的结构与成分

    Table  7   Structure and composition of partial protist biomass

    Biomass species Heteroelement/wt% Structural molecule Pore size scope/μm Surface area/(m2·g−1)
    Spirulina P: 1.2; S: 1.1 Cellulose, hemicellulose, pectin Plasmodesma: 30-60 nm;
    Air hole 0.2-1.0 μm
    214.4
    Nori P: 5.097-7038; Fe: 0.025-0.119
    Kelp N: 1.7-3.0; P: 0.25-0.42 68.3
    下载: 导出CSV

    表  8   原生生物类生物质衍生碳复合材料的结构与成分

    Table  8   Structure and composition of protist biomass derived carbon composites

    BDC species Heteroelement
    species
    Carbonization
    temperature/℃
    ID/IG Pore size scope/nm BET surface
    area/(m2·g−1)
    Pore volume/
    (cm3·g−1)
    Ref.
    Spirulina P, S 650 1.09 30-200 2400 [53]
    Nori P 650 0.99 2 1145 0.58 [61]
    650 1.13 [62]
    650 0.98 200-1000 1145 0.58 [63]
    Kelp P, N 800 1.01 3.50 1085.9 [64]
    下载: 导出CSV

    表  9   原生生物质衍生碳基复合吸波材料的微波吸收性能

    Table  9   Microwave absorption properties of carbon based composite absorbing materials derived from primary biomass

    Precursor
    material
    Amount of
    fill/wt%
    Absorber Thickness/mm Frequence/GHz RLmin/dB EAB/GHz Distribution area
    of EAB/GHz
    Ref.
    Spirulina 18.6 Fe3O4@BDC 1.49 14.68 −45.54 5.14 12.45-17.59 [59]
    60 Ni/BDC 3 8.9 −19.2 4 [60]
    Nori 30 NiCo2O4/BDC 5.5 6.24 −43.20 3.3 [61]
    28.6 Ni@BDC 3.0 9.25 −35.73 [62]
    2.5 6.37 10.35-16.72
    30 MnO2/BDC 5.5 5.04 −40.16 [63]
    3.5 5.12 6.72-11.84
    Kelp 30 NiO-NixSy/BDC 3 7.28 −38.2 2.05 6.33-8.38 [64]
    下载: 导出CSV

    表  10   真菌类、植物类、原生生物类生物质组成成分及吸波机制特点总结

    Table  10   Summarizes the composition and absorbing mechanism characteristics of fungi, plants and protists

    Biomass species Structural components Characteristics of absorbing mechanism
    Fungus Chitin, cellulose Natural heteroatoms P and Fe produce more defects; Phosphorus atoms form a polarization center, which increases the dipole polarization loss; Natural iron ions give magnetic loss.
    Plants Lignin, cellulose, hemicellulose Lignin, cellulose decomposition, and diaryl ether bond cleavage produce a large amount of CO, and the framework cell wall begins to become rough and fluffy, forming more pore structures.
    Protista Cellulose, hemicellulose, pectin After the cellulose reticulum is carbonized, a network of extensive aromatic porous carbon with a macroporous structure is formed. After the pyrolysis of a large number of nitrogen-containing proteins, nitrogen enters the crystal lattice, forming lattice defects and dipoles, forming polarization centers and increasing polarization losses.
    下载: 导出CSV

    表  11   真菌类、植物类、原生生物类生物质微观结构及吸波机制特点总结

    Table  11   Summary of microscopic structure and wave absorbing mechanism of fungi, plants and protists

    Types of BDC Carbon structure Pore size/nm Absorbing mechanism Microstructure and mechanistic characteristics
    Fungus Multicellular Bulk porous carbon combined with a honeycomb carbon fiber mesh 0.5-5 1. A large number of polarization sites and structural defects;
    2. Pore structure to improve impedance matching;
    3. Charge polarization due to the gas/solid interface;
    4. The lattice defect becomes the polarization center and improves the dipole polarization;
    5. Three-dimensional conductive network to improve conductive loss;
    6. Magnetic particles provide magnetic loss;
    7. The heterogeneous interface provides interfacial polarization loss
    The internal pores provide a large number of magnetic particle adsorption sites; Natural heteroatoms form polarization centers to enhance dipole polarization
    Unicellular Carbon microspheres, cellular efflux, and chitin pyrolysis form micropores 5-15
    Plants Leaf Honeycomb hexagonal pores 1.2-2/4 The internal inorganic salts act as templates, and the surface patterns of the blades form a rough undulating surface
    Stem/trunk Hollow frame three-dimensional carbon fiber layer, internal vascular and tracheid carbon channels 2/2-50 The wavelength of the incident electromagnetic wave is smaller than the size of the cell and tracheid to be absorbed, and some carbonized stems have a threaded structure
    Fruit/seed shell Honeycomb porous layered pores with natural mass transfer channels and multi-level pore structures inside 1.4-4/4-50 Amorphous soft carbon with low crystallinity and small grain size
    Protista Phaeophyta Flaked/filamentous porous carbon with numerous porous folds on the surface 1-3 Hard carbon, which is difficult to graphitize, retains its original shape more stably and completely after heat treatment
    Spirulina Spiral structure porous carbon 2-5 The spiral structure creates multiple areas of eddy current loss
    下载: 导出CSV
  • [1]

    DENG S, AI H M, WANG B M. Research on the electromagnetic wave absorption properties of GNPs/EMD cement composite[J]. Construction and Building Materials, 2022, 321: 126398. DOI: 10.1016/j.conbuildmat.2022.126398

    [2]

    ZHANG W, XIANG H, DAI F Z, et al. Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs)[J]. Journal of Advanced Ceramics, 2022, 11(4): 545-555. DOI: 10.1007/s40145-021-0554-2

    [3]

    YAN X, JI T, YE W, et al. Surface modification of activated carbon fibers with Fe3O4 for enhancing their electromagnetic wave absorption property[J]. Journal of Nanomaterials, 2020, 2020: 1-14.

    [4]

    WU N, LIU X, OR S W. Core/shell-structured nickel/nitrogen-doped onion-like carbon nanocapsules with improved electromagnetic wave absorption properties[J]. AIP Advances, 2016, 6(5): 056206. DOI: 10.1063/1.4943357

    [5]

    ZHOU X, JIA Z, FENG A, et al. Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance[J]. Journal of Colloid and Interface Science, 2020, 575: 130-139. DOI: 10.1016/j.jcis.2020.04.099

    [6] 武志红, 姚程, 蒙真真, 等. 生物质衍生碳基复合吸波材料的研究进展[J]. 硅酸盐学报, 2022, 50(7): 2056-2066.

    WU Zhihong, YAO Cheng, MENG Zhenzhen, et al. Research progress on biomass derived carbonaceous composite microwave absorbing materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 2056-2066(in Chinese).

    [7]

    PANCHAKARLA L S, GOVINDARAJ A, RAO C N. Nitrogen- and boron-doped double-walled carbon nanotubes[J]. ACS Nano, 2007, 1(5): 494-500. DOI: 10.1021/nn700230n

    [8]

    QIAO J, ZHANG X, XU D, et al. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption[J]. Chemical Engineering Journal, 2020, 380: 122591. DOI: 10.1016/j.cej.2019.122591

    [9]

    WEI Y, YUE J, TANG X Z, et al. Enhanced magnetic and microwave absorption properties of FeCo-SiO2 nanogranular film functionalized carbon fibers fabricated with the radio frequency magnetron method[J]. Applied Surface Science, 2018, 428: 296-303. DOI: 10.1016/j.apsusc.2017.09.079

    [10] 尚楷. SiC/竹炭(BC)多孔复合材料的制备及吸波性能研究[D]. 西安: 西安建筑科技大学, 2024.

    SHANG Kai. Study on preparation of SiC/bamboo carbon (BC) porous composites and their absorbing properties [D]. Xi'an: Xi'an University of Architecture and Technology, 2024(in Chinese).

    [11]

    KHARBER N N, ALI F Z, ABDULLAH H, et al. Return loss simulation of coconut ashes in microwave absorber brick[M]. Malaysia: ASiDCON 2018 Proceeding Book, 2018: 46.

    [12]

    LAN D, ZHOU H, WU H. A polymer sponge with dual absorption of mechanical and electromagnetic energy[J]. Journal of Colloid and Interface Science, 2023, 633: 92-101. DOI: 10.1016/j.jcis.2022.11.102

    [13]

    OU J, DENG H, ZHANG H, et al. Nitrogen and phosphorus co-doped porous carbon prepared by direct carbonization method as potential anode material for Li-ion batteries[J]. Diamond and Related Materials, 2022, 124: 108931. DOI: 10.1016/j.diamond.2022.108931

    [14]

    BERGNA D, VARILA T, ROMAR H, et al. Activated carbon from hydrolysis lignin: Effect of activation method on carbon properties[J]. Biomass and Bioenergy, 2022, 159: 106387. DOI: 10.1016/j.biombioe.2022.106387

    [15]

    YIN P, ZHANG L, SUN P, et al. Apium-derived biochar loaded with MnFe2O4@C for excellent low frequency electromagnetic wave absorption[J]. Ceramics International, 2020, 46(9): 13641-13650. DOI: 10.1016/j.ceramint.2020.02.150

    [16] 陆晓欣. 碳纤维增强树脂基复合材料表面阻抗调制与结构吸波性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.

    LU Xiaoxin. Research on the surface impedance modulation and structural absorbing properties of carbon fiber reinforced plastic [D]. Harbin: Harbin Engineering University, 2014(in Chinese).

    [17]

    CHENG Y, ZHAO H, LYU H, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications[J]. Advanced Electronic Materials, 2019, 6(1): 1900796.

    [18]

    HAN D, OR S W, DONG X, et al. FeSn2/defective onion-like carbon core-shell structured nanocapsules for high-frequency microwave absorption[J]. Journal of Alloys and Compounds, 2017, 695: 2605-2611. DOI: 10.1016/j.jallcom.2016.11.167

    [19] 万佳宁, 章炉军, 周陈力, 等. 利用石蜡切片方法观察香菇子实体发育初期组织结构[J]. 食用菌学报, 2021, 28(4): 82-90.

    WAN Jianing, ZHANG Lujun, ZHOU Chenli, et al. Microscopic observation of early fruiting body development of lentinual edodes by a modified Paraffin section method[J]. Acta Edulis Fungi, 2021, 28(4): 82-90(in Chinese).

    [20] 孙春水, 郭德才, 陈剑. 碳化木耳多孔碳的制备及在硫正极中的应用[J]. 储能科学与技术, 2021, 10(6): 2060-2068.

    SUN Chunshui, GUO Decai, CHEN Jian. Preparation and research of carbonized agaric material for sulfur cathodes[J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068(in Chinese).

    [21] 侯光耀. 核壳结构CoNi纳米合金/碳复合催化剂制备及析氧性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022.

    HOU Guangyao. Preparation and oxygen evolution performance of core-shell structure coni nano alloys/carbon composite catalyst [D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).

    [22] 胡青桃, 张文达, 李涛, 等. 香菇生物质基氮掺杂微孔碳材料的制备及其在超级电容器中的应用[J]. 无机化学学报, 2020, 36(8): 1573-1581.

    HU Qingtao, ZHANG Wenda, LI Tao, et al. Preparation and application in supercapacitors of shiitake biomass based nitrogen doped microporous carbon[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1573-1581(in Chinese).

    [23]

    WEN J, HE P, LEI C, et al. Fabrication of metal-organic framework@yeast composite materials for efficient removal of Pb2+ in water[J]. Journal of Solid State Chemistry, 2019, 274: 26-31. DOI: 10.1016/j.jssc.2019.03.011

    [24] 强荣, 冯帅博, 李婉莹, 等. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(1): 21-27.

    QIANG Rong, FENG Shuaifu, LI Wanying, et al. Biomass-derived magnetic carbon composites towards microwave absorption[J]. Journal of Textile Research, 2022, 43(1): 21-27(in Chinese).

    [25]

    ZHENG H, NAN K, LU Z, et al. Core-shell FeCo@carbon nanocages encapsulated in biomass-derived carbon aerogel: Architecture design and interface engineering of lightweight, anti-corrosion and superior microwave absorption[J]. Journal of Colloid and Interface Science, 2023, 646: 555-566. DOI: 10.1016/j.jcis.2023.05.076

    [26]

    LIU T, LIU N, GAI L, et al. Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption[J]. Microporous and Mesoporous Materials, 2020, 302: 110210. DOI: 10.1016/j.micromeso.2020.110210

    [27]

    DONG Y, ZHU X, PAN F, et al. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption[J]. Carbon, 2022, 190: 68-79. DOI: 10.1016/j.carbon.2022.01.008

    [28]

    LU Z, REN F, GUO Z, et al. Facile construction of core-shell carbon@CoNiO2 derived from yeast for broadband and high-efficiency microwave absorption [J]. Journal of Colloid and Interface Science, 2022, 625: 415-424.

    [29]

    SU J, YANG R, ZHANG P, et al. Fe/Fe3O4/biomass carbon derived from agaric to achieve high-performance microwave absorption [J]. Diamond and Related Materials, 2022, 129: 109386.

    [30]

    WU Z, JIN C, YANG Z, et al. Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance[J]. Carbon, 2022, 189: 530-538. DOI: 10.1016/j.carbon.2021.12.073

    [31] 陈天驰. 泥炭藓的超亲水机理研究 [D]. 北京: 中国矿业大学, 2018.

    CHEN Tianchi. Study on superhydrophilic mechanism of sphagnum [D]. Beijing: China University of Mining and Technology, 2018(in Chinese).

    [32]

    WANG B, ZHANG Y, YANG Y, et al. Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber[J]. Journal of Alloys and Compounds, 2020, 838: 155586. DOI: 10.1016/j.jallcom.2020.155586

    [33] 张艳. 生物质碳材料及生物质碳/磁性粒子复合材料的微波吸收性能研究[D]. 秦皇岛: 燕山大学, 2020.

    ZHANG Yan. Microwave absorption performance of biomass carbon materials and biomass carbon/magnetic nanoparticle composites [D]. Qinhuangdao: Yanshan University, 2020(in Chinese).

    [34]

    MAO F, LONG L, ZENG G, et al. Achieving excellent electromagnetic wave absorption property by constructing VO2 coated biomass carbon heterostructures[J]. Diamond and Related Materials, 2022, 130: 109422. DOI: 10.1016/j.diamond.2022.109422

    [35] 江泽鹏. 银杏叶基多孔炭材料的制备及其应用的研究[D]. 北京: 北京化工大学, 2020.

    JIANG Zepeng. Preparation and applications of ginkgo leaf deiuved porous carbon materials [D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).

    [36]

    LU J, YAN X, LIU D, et al. In situ loading of calcium sulfide on N, S Co-doped porous carbon derived from ginkgo biloba leaves to ameliorate the mechanism of electromagnetic wave absorption[J]. Vacuum, 2023, 211: 111933. DOI: 10.1016/j.vacuum.2023.111933

    [37] 王沈南. 热处理温度对杉木木材性质的影响机制研究 [D]. 北京: 中国林业科学研究院, 2017.

    WANG Shennan. Effect mechanism of heat treatment temperature on wood properties of Chinese fir [D]. Beijing: Chinese Academy of Forestry, 2017(in Chinese).

    [38]

    CHENG M, REN W, LI H, et al. Multiscale collaborative coupling of wood-derived porous carbon modified by three-dimensional conductive magnetic networks for electromagnetic interference shielding[J]. Composites Part B: Engineering, 2021, 224: 109169. DOI: 10.1016/j.compositesb.2021.109169

    [39] 樊正强, 彭立民, 刘美宏, 等. 微波处理对辐射松吸声性能的影响[J]. 林业科学, 2021, 57(7): 142-149.

    FAN Zhengqiang, PENG Limin, LIU Meihong, et al. Effect of microwave treatment on the sound absorption performance of radiata pine[J]. Scientia Silvae Sinicae, 2021, 57(7): 142-149(in Chinese).

    [40] 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601.

    YANG Xi, CAO Min, JIAN Yu, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601(in Chinese).

    [41]

    JI C, LIU Y, XU J, et al. Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree[J]. Journal of Alloys and Compounds, 2022, 890: 161834. DOI: 10.1016/j.jallcom.2021.161834

    [42]

    JI C, LIU Y, LI Y Y. Facile preparation and excellent microwave absorption properties of cobalt-iron/porous carbon composite materials[J]. Journal of Magnetism and Magnetic Materials, 2021, 527: 167776. DOI: 10.1016/j.jmmm.2021.167776

    [43] 汪帆. 多孔碳基材料的制备及吸波性能研究 [D]. 兰州: 兰州理工大学, 2021.

    WANG Fan. Research on the preparation and microwave absorbing properties of porous carbon-based materials [D]. Lanzhou: Lanzhou University of Technology, 2021(in Chinese).

    [44] 武志红, 李妤婕, 张聪, 等. 竹炭/SiC复合材料结构及其吸波性能[J]. 硅酸盐学报, 2018, 46(1): 150-155.

    WU Zhihong, LI Yujie, ZHANG Cong, et al. Structure and microwave absorption properties of bamboo charcoal/SiC composites[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 150-155(in Chinese).

    [45]

    ZHAO H, CHENG Y, LIU W, et al. Biomass derived porous carbon based nanostructures for microwave absorption[J]. Nano-Micro Letters, 2019, 11(2): 81-97.

    [46]

    ZHOU X, JIA Z, FENG A, et al. Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass[J]. Composites Communications, 2020, 21: 100404. DOI: 10.1016/j.coco.2020.100404

    [47] 刘海燕, 廉士珍, 王秀飞, 等. 玉米秸秆不同部位纤维组成和结构的研究[J]. 粮食与饲料工业, 2017(11): 55-58.

    LIU Haiyan, LIAN Shizhen, WANG Xiufei, et al. Fibre composition and structure of different fractions of corn stalk[J]. Food and Feed Industry, 2017(11): 55-58(in Chinese).

    [48]

    ASLAM M A, DING W, UR R S, et al. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance[J]. Applied Surface Science, 2021, 543: 148785. DOI: 10.1016/j.apsusc.2020.148785

    [49]

    SONG W, ZHAO Q, WANG Z. Magnetic biomass porous carbon@Co/CoO nanocomposite for highly efficient microwave absorption[J]. Materials Research Bulletin, 2023, 167: 112371. DOI: 10.1016/j.materresbull.2023.112371

    [50]

    YIN P, ZHANG L, JIANG Y, et al. Recycling of waste straw in sorghum for preparation of biochar/(Fe, Ni) hybrid aimed at significant electromagnetic absorbing of low-frequency band[J]. Journal of Materials Research and Technology, 2020, 9(6): 14212-14222. DOI: 10.1016/j.jmrt.2020.10.034

    [51] 苏建君. 稻壳基纳米碳化硅的制备及吸波性能研究 [D]. 武汉: 武汉科技大学, 2017.

    SU Jianjun. Synthesis and electromagnetic wave absorption properties of silicon carbide nanomaterials from rice husks [D]. Wuhan: Wuhan University of Science and Technology, 2017(in Chinese).

    [52] 周帆, 毕辉, 黄富强. 用稻壳制备亚甲基蓝高吸附容量的超高比表面积活性炭[J]. 无机材料学报, 2021, 36(8): 893-903. DOI: 10.15541/jim20200632

    ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra large specific surface area activated carbon synthesized from rice husk with high adsorption capacity for methylene blue[J]. Journal of Inorganic Materials, 2021, 36(8): 893-903(in Chinese). DOI: 10.15541/jim20200632

    [53]

    SHU X, FANG B, WU W, et al. Acicular or octahedral Fe3O4/rice husk-based activated carbon composites through graphitization synthesis as superior electromagnetic wave absorbers[J]. Composites Part A: Applied Science and Manufacturing, 2021, 151: 106635. DOI: 10.1016/j.compositesa.2021.106635

    [54]

    YAN L, XIANG J, LI Y, et al. Facile synthesis of NiCo2 nanoparticles grown on rice husk waste-derived porous carbon for high-efficiency microwave absorption[J]. Journal of Materials Research and Technology, 2023, 24: 9780-9792. DOI: 10.1016/j.jmrt.2023.05.177

    [55]

    WU Z, MENG Z, YAO C, et al. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption[J]. Materials Chemistry and Physics, 2022, 275: 125246. DOI: 10.1016/j.matchemphys.2021.125246

    [56]

    KHARBER N N, DAMIT D S A, ABDULLAH H, et al. Characteristic of biomass percentage in cement brick composites microwave absorber [C]//NADRAH N K. International Conference on Energy Equipment Science and Engineering. 2017 Internationa Conference on Electrical, Electronics and System Engineering. Nanjing: 2017: 21-26.

    [57]

    MISHRA S P, NATH G, MISHRA P. Ultrasonically synthesized dielectric microwave absorbing material from coconut coir dust[J]. Waste and Biomass Valorization, 2020, 11: 1481-1490. DOI: 10.1007/s12649-018-0478-4

    [58]

    ZHANG Y, CHENG H, LIU J, et al. Laver derived carbon as an anode for sibs with excellent electrochemical performance[J]. International Journal of Electrochemical Science, 2020, 15(6): 5144-5153. DOI: 10.20964/2020.06.86

    [59]

    CHEN T, CAI J, GONG D, et al. Facile fabrication of 3D biochar absorbers dual-loaded with Fe3O4 nanoparticles for enhanced microwave absorption[J]. Journal of Alloys and Compounds, 2023, 935(1): 168085.

    [60] 顾鹏. 微生物负载Ni吸波材料的制备及性能研究 [D]. 镇江: 江苏大学, 2012.

    GU Peng. Study on the preparation and properties of microbial supported Ni absorbing materials [D]. Zhenjiang: Jiangsu University, 2012(in Chinese).

    [61] 陈晓雯, 罗驹华, 江陈烨, 等. NiCo2O4/BPC复合材料的制备及吸波性能研究[J]. 现代化工, 2022, 42(1): 140-144.

    CHEN Xiaowen, LUO Yihua, JIANG Chenye, et al. Preparation of NiCo2O4/BPC composite and study on its properties in absorbing microwave[J]. Modern Chemical Industry, 2022, 42(1): 140-144(in Chinese).

    [62]

    WANG Z, XU G. 3D porous Ni@BPC composites for enhanced electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2022, 24(2): 647-674.

    [63] 陈晓雯. 紫菜衍生多孔碳材料吸波性能增强方法及吸波机理研究 [D]. 镇江: 江苏大学, 2021.

    CHEN Xiaowen. Research on improving microwave absorption property of porphyra derived porous carbon and its absorbing mechanism [D]. Zhenjiang: Jiangsu University, 2021(in Chinese).

    [64]

    WANG X T, XIAO Z Y, NIU W S, et al. Nickel oxide/sulfide nanoparticle-embedded porous carbon prepared from kelp for excellent asymmetrical supercapacitors and microwave absorbers[J]. Journal of Alloys and Compounds, 2022, 918: 165721. DOI: 10.1016/j.jallcom.2022.165721

  • 目的 

    为解决电子信息技术带来的电磁波污染问题,碳基复合吸波材料受到了广泛的关注。而作为一种高效、廉价的制备多孔碳基体的原料,生物质碳备受瞩目。虽然如今生物质碳的制备原料种类众多,但所获得的碳基体吸波性能与其众多原料本身的性质之间的联系几乎无人探究。因此,本文利用生物科学分类法的分类标准,对其生物质及衍生碳的结构、分子与元素组成进行探索及归纳,得到生物质种类与其衍生碳吸波性能之间的关系。

    方法 

    将不同种类的生物质前驱体按照生物科学分类法分为真菌界、植物界、原生生物界三大类。通过分析不同生物质前驱体的元素及结构组成差异;并进一步通过生物科学分类法对其近缘生物质结构及其元素组成进行归纳与比较;之后对其生物质衍生多孔碳的结构及其元素组成进行比较与归纳,寻找同门类、科目的生物质前驱体衍生碳及其复合吸波材料的吸波性能与其杂元素种类、衍生碳孔径尺寸及分布的联系。

    结果 

    对真菌界及原生生物界生物质衍生碳选择常见的三种生物质进行分析,对植物界分为植物的不同部位生物质碳性质进行分析,得出了以下

    结论 

    a.共同吸波机理:1. 大量极化位点和结构缺陷;2. 孔隙结构改善阻抗匹配;3. 气/固界面引起的电荷极化;4. 晶格缺陷成为极化中心,改善了偶极子极化;5. 三维导电网络,改善导电损耗;6. 磁性颗粒提供磁损耗;7. 非均相界面提供了界面极化损耗。b.不同界生物质衍生碳吸波机理差异:1.真菌界生物质由其内部天然孔隙提供了大量的磁颗粒吸附位点,所含有的天然杂原子形成极化中心,增强偶极极化。2.植物界生物质由其内部无机盐充当模板,叶片的表面图案形成粗糙的起伏表面,入射电磁波的波长小于待吸收的细胞和管状体的尺寸,有些碳化茎具有螺纹结构,含有的非晶软碳,结晶度低,晶粒尺寸小。3.原生生物界生物质碳含有的难石墨化的硬碳经过热处理后,能更稳定、完整地保持其原有形状,部分种类含有的螺旋结构有助于产生多个涡流损耗区域。

    结论 

    生物质前驱体的来源丰富,种类繁多,成分多样,且能够同时起到碳基前驱体与多孔模板两个作用。通过改变碳化温度与活化剂种类,可以调整复合材料的表面形貌、结构特征,通过选择不同的加载粒子改变材料的磁损耗性能,进而影响材料的吸波性能。然而,目前的生物质碳吸波材料也面临着如下的许多挑战:(1) 真菌衍生碳表面的含氧官能团分布随真菌部位变化,容易使得附着磁性粒子的分布不均匀。(2) 植物衍生碳复合材料在进行热解时会有溢出气体,过大的气压会容易破坏原有的多孔网状结构,过高的热解温度也会使得木质素结构坍塌。(3) 原生生物界藻类衍生碳由于其含有液泡较大且易碎的特点,在热处理后结构容易坍塌,损失附着粒子与原有的多孔吸波结构。(4) 生物质衍生碳与磁性材料复合,如何在保证材料密度小、结构轻、耐腐蚀、吸波性能优秀的前提下,赋予材料在不同波段电磁波下自主调节结构形貌以达到最佳吸波性能,以构建智能化电磁波吸收材料也是今后的主流研究方向。

图(36)  /  表(11)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  385
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-01-19
  • 录用日期:  2024-02-02
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-07-31

目录

/

返回文章
返回