Loading [MathJax]/jax/output/SVG/jax.js

ECC壳-RC组合墩柱抗震性能及塑性铰形成机制

王瑾, 许维炳, 杜修力, 丁梦佳, 陈彦江, 方荣, 闫晓宇

王瑾, 许维炳, 杜修力, 等. ECC壳-RC组合墩柱抗震性能及塑性铰形成机制[J]. 复合材料学报, 2024, 41(7): 3689-3703. DOI: 10.13801/j.cnki.fhclxb.20240009.003
引用本文: 王瑾, 许维炳, 杜修力, 等. ECC壳-RC组合墩柱抗震性能及塑性铰形成机制[J]. 复合材料学报, 2024, 41(7): 3689-3703. DOI: 10.13801/j.cnki.fhclxb.20240009.003
WANG Jin, XU Weibing, DU Xiuli, et al. Seismic performance of ECC shell-RC composite pier column and its plastic hinge developing mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3689-3703. DOI: 10.13801/j.cnki.fhclxb.20240009.003
Citation: WANG Jin, XU Weibing, DU Xiuli, et al. Seismic performance of ECC shell-RC composite pier column and its plastic hinge developing mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3689-3703. DOI: 10.13801/j.cnki.fhclxb.20240009.003

ECC壳-RC组合墩柱抗震性能及塑性铰形成机制

基金项目: 国家自然科学基金(52108428;52178446);中央高校基本科研业务费专项资金资助项目(2023MS067);北京工业大学重点实验室校外开放课题资助项目(2022B02)
详细信息
    通讯作者:

    许维炳,博士,副教授,博士生导师,研究方向为高性能混凝土在工程结构中的应用 E-mail: weibingx@bjut.edu.cn

  • 中图分类号: TU528.58;TB333

Seismic performance of ECC shell-RC composite pier column and its plastic hinge developing mechanism

Funds: National Natural Science Foundation of China (52108428; 52178446); Fundamental Research Funds for the Central Universities (2023MS067); Open Research Fund of Key Laboratory of Beijing University of Technology (2022B02)
  • 摘要: 为提升钢筋混凝土(RC)墩柱的抗震性能并充分利用工程水泥基复合材料(ECC)的力学性能,提出了ECC壳-RC组合墩柱的构造;基于ABAQUS有限元软件建立了现浇ECC壳-RC组合墩柱数值分析模型,并基于既有试验结果验证;进而探究了ECC节段高度、ECC壳厚度、纵筋配筋率、体积配箍率、轴压比等参数对组合墩柱抗震性能的影响规律。在此基础上,探讨了该型组合墩柱塑性铰形成机制。结果表明:相较于RC墩柱,ECC壳-RC组合墩柱的承载能力、延性和耗能能力均有所提高。增加ECC节段高度,组合墩柱的峰值荷载有所增加,ECC节段高度达到1.4h (h为截面高度)后组合墩柱的抗震性能接近全高度ECC墩柱的抗震性能;增加ECC壳厚度及纵筋配筋率可同时提高组合墩柱的峰值荷载及延性,ECC壳厚度达到1/5h后继续增加ECC壳厚度对提升组合墩柱抗震性能效果不明显;增加轴压比可使试件初始刚度和峰值荷载增加,但对延性产生不利影响;减小塑性铰区域的体积配箍率试件延性明显降低,而承载力变化不明显;组合墩柱的塑性铰形成机制受ECC壳-RC组合节段高度影响显著,存在一个组合节段临界高度使该组合柱的塑性铰区不发生转移。
    Abstract: To improve the seismic performance of reinforced concrete (RC) pier column and fully utilize the mechanical properties of engineered cementitious composites (ECC), an innovative ECC shell-RC composite pier column was proposed. The numerical analysis model of the composite pier column was established and verified based on ABAQUS platform and existing experimental results, respectively. On this basis, the influence of common design parameters on the seismic performance of the composite pier column was systematically investigated, including the ECC segment height, ECC shell thickness, longitudinal reinforcement ratio, volume stirrup ratio and axial compression ratio. Finally, the plastic hinge development mechanism of the composite pier column was clarified. The results show that compared with RC pier column, the bearing capacity, displacement ductility and energy dissipating capacity of ECC shell-RC composite pier columns are improved. The peak loads of the composite pier columns increase with the ECC segment height increasing. The seismic performance of the composite pier columns can approach to that of the ECC pure pier column when the height of the ECC shell-RC composite segment is larger than 1.4h (Transverse dimension of the pier column h). The peak load and ductility of the composite pier column increase with the ECC shell thickness and longitudinal reinforcement ratio increasing. However, the seismic performance of the composite pier column will not significantly change when the ECC shell thickness is larger than 1/5h. The increase of the axial compression ratio can increase the initial stiffness and peak load of the specimen, while has a negative impact on its ductility. The decreasing of the volume stirrup ratio around the plastic hinge zone will significantly decrease the ductility of the specimen, but little affect its bearing capacity. The plastic hinge development mechanism of the composite pier column is significantly influenced by the height of the ECC shell-RC composite segment. There is a minimum critical height of the composite segment to make the plastic hinge zone not transfer.
  • 碳纤维增强树脂复合材料(Carbon fiber reinforced plastics,CFRP)具有比金属更高的比刚度和比强度、优异的耐腐蚀和抗疲劳特性,但是其面外承载能力及抗冲击特性较弱[1-3],而金属延展性较好,抗冲击性能优良。为了结合二者的优点,常常将金属与CFRP复合材料复合,进行轻量化结构设计,如纤维-金属层合板(Fiber metal laminates, FMLs)超混杂结构[1,4],纤维-金属-泡沫夹层结构[5-7]等在航空航天、汽车工业、船舶和民用建设等领域的应用越来越广泛[8-16]。就汽车轻量化而言,发展车用CFRP-金属超混杂层合承载结构是一种既能满足高性能要求又同时兼顾一定成本的策略。在金属方面,单从材料的密度来看,铝合金、钛合金及镁合金等轻金属相比于钢的密度较小,但其更高的成本也在一定程度上限制了其在汽车轻量化方面的应用[17];而热成型钢因其成本较低、强度较高、碰撞吸能优良及成型性较好等优势已成为汽车轻量化的一种主要材料[18]。因此结合CFRP复合材料与热成型钢的优点,开发CFRP-热成型钢超混杂层合承载结构,在汽车工业具有非常良好的应用前景,目前宝马7系的B柱结构已经采用了这种混杂轻量化结构设计。然而,热成型钢和CFRP复合材料属于异种材料,两者之间必然存在物理性能的差异(如热膨胀系数、弹性模量等),导致钢与CFRP复合材料界面之间粘结强度较低,从而在界面上容易产生脱层,滋生裂纹。因此,对钢与CFRP复合材料界面连接进行增强增韧研究十分重要。

    就改善FMLs层间断裂韧性而言,可以从两个方面分别入手:(1)可以通过改进金属与CFRP复合材料界面性能实现改善其层间断裂韧性的目的;(2)可以通过提高CFRP复合材料层的力学性能来改善其层间断裂韧性。对于改进FMLs界面性能,一般要对金属进行表面处理,如机械打磨[19]、激光刻蚀[20]、硅烷化处理[21]、喷砂[22-23]和等离子处理[24]等。对于改进CFRP复合材料层间力学性能,插层[25-27]、三维编织[28]、z-pinning[29]等技术被开发出来。目前,大部分学者的研究主要集中在金属表面处理方式或CFRP复合材料内部插层,而结合金属表面处理技术和CFRP-金属界面插层协同改善FMLs层间断裂韧性的研究还较少,对其增韧机制的研究还不够完善。

    本文以热成型钢和CFRP复合材料为研究对象,采用金属表面处理和界面插层协同增韧方案,运用热压成型工艺制备出了6种不同界面强韧化方案的CFRP-热成型钢超混杂复合结构。并通过双悬臂梁试验(Double cantilever beam tests, DCB)和相关表征,讨论了表面处理和界面插层对CFRP-热成型钢超混杂复合结构层间断裂韧性的影响。另外,基于内聚区模型,对典型的界面增韧方案进行建模,并将其与实验结果进行了对比。

    试验采用的钢板为连续变截面轧制热成型钢板(Tailor rolled blanks, TRB),厚度为1.2 mm,由北汽集团新技术研究院提供,其主要化学成分(按质量分数计算)为0.23wt%C、0.25wt%Si、1.35wt%Mn、0.19wt%Cr、0.04wt%Mo, 0.003wt%B, 经过加热并淬火后的拉伸强度可达1 500 MPa;单向T700碳纤维/树脂预浸料,中复神鹰碳纤维有限公司;环氧树脂(Epoxy,EP)为双酚F型树脂EPON 862,固化剂为EPIKURE 3140,均由广州市镐韵化工有限公司提供,其中环氧树脂与固化剂的质量比为2∶1;胶膜为艾联公司的L-F501,厚度约为0.3 mm;具体的材料参数见表1。其他原材料均由成都科隆化工有限公司提供。

    表  1  碳纤维增强树脂复合材料(CFRP)及插层(L-F501胶膜和树脂)的物理参数
    Table  1.  Physical parameters of carbon fiber reinforced plastics(CFRP) composite and interlayer (L-F501 and epoxy)
    MaterialPhysical parameterValue
    CFRPYoung’s modulus (Fiber direction)/GPa138
    Young’s modulus (Transverse direction)/GPa10
    Tensile strength (Fiber direction)/MPa1 800
    Class fiber volume fraction/vol%67
    L-F501Young’s modulus/GPa3.6
    Tensile strength/MPa40
    Steel-to-steel joint (Untreated)/MPa28
    EpoxyYoung’s modulus/GPa3
    Tensile strength/MPa60
    下载: 导出CSV 
    | 显示表格

    本文采用热压成型工艺,对CFRP和热成型钢进行有效地共固化粘结。具体制备CFRP-热成型钢超混杂层合板的流程和热压工艺如图1所示。

    图  1  CFRP-热成型钢超混杂层合板制备流程示意图及热压工艺
    Figure  1.  Schematic illustration of CFRP-thermoformed steel super-hybrid laminates fabrication and hot pressing process

    裁剪一定尺寸的热成型钢板,将其浸泡至酒精溶液中,超声清洗30 min,以做简单的脱脂处理,60℃干燥箱烘干。最后裁剪相应尺寸的CFRP复合材料预浸料,与热成型钢进行共固化热压成型。

    选用600#型号砂纸对热成型钢表面进行有效打磨,随后将打磨处理后的钢板浸泡至酒精溶液中进行脱脂,其余过程同1.3.1节。

    选用36#金刚砂(SiC类型),利用吸入式喷砂机对热成型钢进行喷砂处理,喷砂作业时空气压力为0.8 MPa左右,喷砂距离约为9 cm,喷砂角度为70°~85°,随后将喷砂处理后的钢板浸泡至酒精溶液中,超声清洗30 min,以去除表面的油脂和残留的SiC颗粒,其余过程同1.3.1节。

    由于CFRP复合材料与金属之间容易存在电化学腐蚀问题,因此引入界面插层来隔绝电化学腐蚀。本文拟采用L-F501胶膜和纯树脂插层两种方案。

    L-F501胶膜插层:直接将裁剪好的单层胶膜引入到CFRP复合材料与金属界面之间,进行叠层铺设,最后将试件放到热压机中,进行共固化热压成型(最终胶膜的厚度在0.2 mm左右)。

    纯树脂插层:首先将环氧树脂与固化剂按质量2∶1进行混合,进行搅拌10 min,脱泡5 min,得到自制的纯树脂粘结剂。采用涂布机将配好的纯树脂粘结剂均匀敷在热成型钢与裁好的CFRP复合材料之间,保证环氧胶面密度为225 g/m2,最后将试件放到热压机中,进行共固化热压成型(最终的环氧胶厚度在30 μm左右)。

    对上述金属表面处理方式和界面插层进行组合,得到了本文层间增韧的具体6种方案如表2所示。

    表  2  试验方案
    Table  2.  Experimental schemes
    GroupScheme nameAbbreviation scheme
    1DegreasingDegreasing
    2600# sandpaper grinding600#
    3SandblastingGB36#
    4Degreasing/adhesive film interleavesDegreasing/AF
    5Sandblasting/adhesive film interleavesGB36#/AF
    6Sandblasting/epoxy resin interleavesGB36#/EP
    下载: 导出CSV 
    | 显示表格

    参照标准JIS K 7086[30]对CFRP-热成型钢超混杂层合板进行DCB实验,本文中的层合板结构为2/1结构(铺叠形式为钢/[0]3CFRP/钢)。由于试件不完全对称,在DCB测试中可能造成试件末端偏移影响测量精度[31],为此通过增大钢板厚度和减小CFRP复合材料层的厚度来近似使其上下板的弯曲刚度接近,以减小实验误差。试件尺寸及加载示意图如图2所示。其中,L、B、2H、t分别代表试件的长、宽、高和CFRP复合材料层的厚度。预制裂纹长度为af;嵌入物尖端至力的加载点为初始裂纹,其初始分层长度为a;分层增量Δa由钢板两侧的刻度作为标记。实验的加载速度为1 mm/min,当分层增量达到50 mm时,停止加载。采用改进的柔度校准方法计算得到I型层间断裂韧性GIC(kJ/m2)[30]

    图  2  双悬臂梁试验(DCB)试件示意图(预制裂纹位于钢板与插层之间)
    Figure  2.  Schematic illustration of specimen for double cantilever beam(DCB) tests (Precrack lies between the steel plate and interlayer)
    GIC=32(2H)(PCB)(Bλ)23αI (1)
    a2H=αI(Bλ)13+α0 (2)

    其中:PC为裂纹起始时的临界载荷;λ为柔度;αI为拟合直线的截距;α0为拟合直线的斜率。

    图3为通过静态DCB试验得到的各类型试件的I型载荷-位移曲线。可知:随着张开位移的增大,载荷也逐渐增大,载荷与张开位移初始阶段呈线性关系;随后曲线出现拐点,载荷非线性上升直到最大值;最后阶段,张开位移增大,载荷P逐渐减小,直到分层长度达到50 mm,结束实验。图4为所有方案试件的临界载荷PC。可以看到,金属表面处理和界面插层对界面失效临界载荷PC有着不同的影响。其中,对金属表面进行喷砂处理可以有效地提高临界载荷PC,且效果明显优于其他类别的表面处理方式;对热成型钢和CFRP复合材料界面进行插层,如脱脂/界面插层胶膜试件,相比于单进行脱脂处理试件,其临界载荷PC也得到了极大的提高,表明界面插层有利于层间力学性能的提高;在对金属表面进行喷砂处理的基础上,进一步在异种材料界面引入插层进行协同增强处理,如喷砂/界面胶膜插层试件,其临界载荷PC相比于脱脂/界面胶膜插层试件有了更进一步地提高,证明了采用金属表面处理技术与界面插层协同改性层合板的有效性。其可以最大幅度地提高界面失效临界载荷。另外,对于协同改性层合板的试件,临界载荷值PC均高于只进行金属表面处理的试件;纯树脂插层试件的临界载荷低于胶膜插层的临界载荷。

    图  3  CFRP-热成型钢超混杂层合板DCB试样的载荷-位移曲线
    Figure  3.  Representative load-displacement curves of DCB for CFRP-thermoformed steel super-hybrid laminates
    图  4  CFRP-热成型钢超混杂层合板DCB试样的临界载荷PC
    Figure  4.  Critical load PC of DCB for CFRP-thermoformed steel super-hybrid laminates

    通过载荷、张开位移和分层增量可以计算出不同位置处的断裂韧性值。图5为不同方案试件的R曲线,横坐标为分层增量Δα,纵坐标为I型层间断裂韧性。可以看出,随着裂纹的扩展,其层间断裂韧性值逐渐增大,主要是由于初始分层裂纹形成后会引起纤维桥接,随后层间断裂韧性趋于平稳状态。

    图  5  CFRP-热成型钢超混杂层合板DCB试样应变能释放率与裂纹扩展增量的阻力曲线
    Figure  5.  Resistance curves of energy release rate-crack increment of DCB for CFRP-thermoformed steel super-hybrid laminates

    不同方案对应的I型断裂韧性GIC和断裂阻抗GIR图6所示,其中GIC为Δα=0 mm处的断裂韧性值,GIR为Δα=25~45 mm处的平均断裂韧性值。可以看出,断裂韧性的变化规律与临界载荷的变化规律相同。其中,对于机械打磨的试件,GICGIR均比较低;喷砂试件的GICGIR均高于脱脂试件,分别提高了64%和81%(见图6),说明喷砂处理可以有效提高层间断裂韧性;在脱脂钢板与CFRP复合材料界面之间引入胶膜,其断裂韧性得到了极大的提高,相比于脱脂试件,GICGIR分别提高了214%和237%;对CFRP复合材料-热成型钢进行喷砂和界面胶膜插层协同改性,可以最大限度地提高层间断裂韧性,尤其GIC,相比于脱脂试件提高了近343%,相比于喷砂试件提高了170%,相比脱脂/界面插层胶膜试件提高了41%;另外,纯树脂插层的试件,其层间断裂韧性相比于只进行金属表面处理的试件也有较大提高。

    图  6  CFRP-热成型钢超混杂层合板I型断裂韧性 GIC和断裂阻抗GIR对比
    Figure  6.  Comparison of Mode-I fracture toughness GIC and resistance GIR for CFRP-thermoformed steel super-hybrid laminates

    利用ABAQUS软件对层合板I型裂纹扩展进行有限元模拟。其中,CFRP复合材料和钢板采用二维平面应变单元,单元类型为CPE4RH。胶膜或纯树脂插层采用二维平面应变单元,单元类型为内聚单元COH2D4。由于胶膜固化后有实际厚度且不可忽略,因此对Degreasing/AF 和GB36#/AF样品采用有限厚度内聚单元建模来模拟界面脱粘;而其他类型试件,界面胶层较薄,故采用零厚度内聚单元进行建模。在模拟裂纹扩展阶段时,为了克服计算收敛问题,将内聚单元尺寸调到0.5 mm以下。最后根据试验测得的I型断裂韧性GIC等相关参数,得到I型加载模拟结果,并将其与实验结果进行对比,如图7所示,可见,计算结果和试验结果吻合程度较好。

    图  7  CFRP-热成型钢超混杂层合板DCB实验有限元仿真模型与结果
    Figure  7.  Finite element model and simulation results of CFRP-thermoformed steel super-hybrid laminates for DCB tests
    FEA—Finite element analysis

    有多种因素促成了CFRP-热成型钢超混杂层合板层间断裂韧性的提高。其中,钢板表面的物理化学性质(如钢板表面的微结构、粗糙度和表面润湿性等)起着重要的作用。

    图8为不同金属表面处理方式下的钢板表面形貌。对脱脂钢板表面进行扫描电镜观察(见图8(a)),明显可见脱脂钢板表面有很多不规则的凹凸结构,相对粗糙;而钢板经过砂纸打磨处理之后(见图8(b)),原本粗糙的表面变得更光滑,表面出现了一些较细腻的划痕;对钢板表面进行喷砂处理后(见图8(c)),钢板表面出现了较大的起伏,相较脱脂钢板,其表现变得更粗糙,凹凸结构也更明显。从上述钢板表面微结构的变化可以看出,不同的表面处理方式可以得到不同的粗糙度和微结构,它们是影响层间断裂韧性的一个重要因素。图9为采用激光共聚焦扫描显微镜测试得到的钢板表面粗糙度。其中脱脂钢板表面的粗糙度Ra为2.55 μm,砂纸打磨处理后的钢板表面的粗糙度为0.79 μm,喷砂钢板表面的粗糙度为7.97 μm。粗糙度测试结果与SEM结果一致,同时也与相应金属表面处理试件的层间断裂韧性值的大小相互吻合,表现为粗糙程度越高,其层间断裂韧性也越大,这是由于粗糙的表面有利于提高金属与树脂之间的力学机械联锁作用,从而在一定程度上改善超混杂层合板的层间断裂韧性。

    图  8  不同表面处理方式下钢板表面的微观形貌
    Figure  8.  Microstructures of steel surfaces treated with different methods
    图  9  钢板表面的粗糙度轮廓
    Figure  9.  Surface roughness profiles of the surface treated steel

    图10为不同金属表面处理方式下钢板表面的接触角。可以得出以下结论:对脱脂钢板进行机械打磨,由于表面的凹凸结构被破坏,钢板表面的接触角从77.5降到72.5,润湿性增强;喷砂处理的钢板,表面接触角较大,浸润性也较差,不利于树脂与金属之间的充分接触[17]。但从最终的DCB实验结果来看,虽然表面润湿性和粗糙度都对界面粘结性能有影响,但是两者存在竞争机制,本实验中,表面粗糙度对层间断裂韧性的提升占主导地位。

    图  10  钢板表面的接触角
    Figure  10.  Contact angles of the treated steel surfaces

    图11为采用电子显微镜观察到的各组试件的钢板一侧破坏面。从图11(a)图11(b)可以看到,对于脱脂试件和砂纸打磨的试件,其钢板表面只有微量的碳纤维和树脂附着,CFRP复合材料与热成型钢直接在界面发生失效,裂纹扩展时裂纹几乎不发生偏转(见图12(a)),导致其层间断裂韧性较低。当对热成型钢表面进行喷砂处理之后,如图11(c)GB36#样品,由于提高了热成型钢与树脂之间的机械联锁作用,界面脱粘的现象发生了改变,大量的纤维和树脂附着在钢板表面,界面破坏形式主要为内聚破坏,而内聚破坏主要由高分子基体失效引起,在裂纹扩展时会消耗更多的能量,因此GB36#样品的层间断裂韧性较脱脂和机械打磨试件要高,同时这也证明了改变界面破坏的形式,可以有效地提高金属纤维层合板的层间断裂韧性。进一步对GB36#试件破坏面的局部进行显微镜观察(见图11(c)右上角),可以看到有少部分的钢板直接暴露了出来,可能原因是喷砂会使钢板表面粗糙度急剧增加,润湿性下降,导致部分钢板与树脂粘接作用力不强而脱粘。如图11(e),在脱脂钢板与CFRP复合材料界面之间引入胶膜,其破坏模式比较特殊,除了裂纹起始这一小部分的破坏模式是界面失效外,其他区域均是内聚失效;而且可以清楚地看到破坏面比较粗糙同时伴有胶层中短切纤维拔出的现象,粗糙的表面说明了裂纹在扩展时,由于裂纹偏转和基体的塑性变形产生了更大的断裂面积,而纤维的桥接作用又有利于胶膜的增强增韧;另外胶膜与复合材料之间存在化学交联的作用,界面粘结性能较好,以上就是插层胶膜能够大幅度提高层间断裂韧性的主要原因。将Degreasing/AF和GB36#/AF试件进行对比(见图11(e)图11(f)),GB36#/AF试件的钢板表面全部被断裂的胶膜所包覆,它在起裂和裂纹扩展位置的破坏模式都属于内聚破坏,而Degreasing/AF试件在起裂和裂纹扩展阶段发生的是界面破坏和内聚破坏,这就是两组样品GIC不同但GIR相近的原因。再对GB36#/EP样品的破坏面进行观察(见图11(d)),不难看出其层间断裂的模式也是内聚破坏,但与GB36#试件的破坏面形貌稍有不同,出现差异的原因有:树脂层厚度的增加会扩大裂纹扩展的范围(见图12(b)12(c)),延长裂纹扩展路径[25],这也是GB36#/EP试件层间断裂韧性比GB36#试件高的原因。将GB36#/EP与GB36#/AF两组试件进行对比,GB36#/AF层间断裂韧性比GB36#/EP试样高,可能原因有:胶膜中本身包含的短切纤维的桥接作用有利于裂纹的偏转和胶层的增强增韧;胶膜插层的厚度大于纯树脂插层的厚度,意味着容许裂纹扩展的范围增大(见图12(f));胶膜基体与环氧树脂基体本身的力学性能差异等。

    图  11  CFRP-热成型钢超混杂层合板I型层间断裂形貌
    Figure  11.  Morphologies of the fracture surface of CFRP-thermoformed steel super-hybrid laminates after Mode-I tests
    图  12  CFRP-热成型钢超混杂层合板I型加载下裂纹扩展行为示意图
    Figure  12.  Schematic explanation of crack growth behavior of CFRP-thermoformed steel super-hybrid laminates under Mode-I loading

    (1)通过双悬臂梁(DCB)试验结果,可以得知采用金属表面处理和界面插层协同增韧的方案,能最大限度地提高纤维-金属层合板的层间断裂韧性。其中喷砂/界面胶膜插层(GB36#/AF)试件的I型断裂韧性GIC和断裂阻抗GIR相比于脱脂试件提高了343%和254%;GB36#/EP试件的GICGIR相比于脱脂试件提高了129%和100%。

    (2)根据内聚单元建立的有限元模型及临界载荷PC和I型断裂韧性GIC等相关参数,得到了I型加载模拟结果,且与实验曲线对比拟合程度较好。

    (3)通过断裂面形貌观测,可以发现各组试件的失效破坏特征有所差异。对于脱脂和金属打磨的试件,其失效模式主要是界面失效;对于喷砂和插层试件,破坏模式主要为内聚失效。

    (4)基于以上表征和观测,揭示了碳纤维增强树脂复合材料(CFRP)-热成型钢界面的增强增韧机制。提高钢板表面的粗糙度,可以有效地提高钢板与聚合物基体的机械联锁作用;在金属-CFRP复合材料界面之间插层胶膜或树脂,可以有效地扩大裂纹扩展的范围,延长裂纹扩展路径;另外胶膜内部含有很多短切纤维,短切纤维的桥接作用使裂纹在扩展时发生偏转,从而导致基体的塑性破坏,吸收更多的能量。

  • 图  1   工程水泥基复合材料(ECC)壳(节段)-钢筋混凝土(RC)组合墩柱构造

    Figure  1.   Engineered cementitious composites (ECC) shell (segment)-reinforced concrete (RC) composite pier structure diagram

    图  2   ECC本构关系模型

    Figure  2.   ECC constitutive relation model

    σt, σtp, σt0—Tensile stress, ultimate tensile strength, nominal cracking strength; εt, εtu, εt0—Tensile strain, ultimate tensile strain, nominal cracking strain; σc, σec0—Compressive stress, peak compressive stress; εc, εec0, εecu—Compressive strain, peak compressive strain, ultimate compressive strain

    图  3   模型边界条件及网格划分示意图

    Figure  3.   Model boundary conditions and meshing diagram

    RP—Reference point

    图  4   模拟等效塑性应变(PEEQ)云图

    Figure  4.   Simulated equivalent plastic strain (PEEQ) cloud images

    图  5   试验和模拟滞回曲线对比

    Figure  5.   Hysteresis curves comparison between test and numerical results

    FEM—Finite element method

    图  6   ECC壳-RC组合墩柱整体布置图

    Figure  6.   Overall layout of ECC shell-RC composite pier column

    图  7   ECC节段高度he的影响

    Figure  7.   Effect of ECC segment height he

    Ks—Average secant stiffness; K0—Initial stiffness

    图  8   不同he试件PEEQ云图

    Figure  8.   PEEQ cloud diagram of specimens with different he

    图  9   ECC壳厚度t的影响

    Figure  9.   Effect of ECC shell thickness t

    图  10   ECC壳-RC组合墩柱纵筋配筋率ρs的影响

    Figure  10.   Effect of longitudinal reinforcement ratio ρs of ECC shell-RC composite pier column

    图  11   ECC壳-RC组合墩柱的体积配箍率ρsv的影响

    Figure  11.   Effect of volume stirrup ratio ρsv of ECC shell-RC composite pier column

    图  12   ECC壳-RC组合墩柱的轴压比n的影响

    Figure  12.   Effect of axial compression ratio n of ECC shell-RC composite pier column

    图  13   规范设计反应谱与地震波反应谱对比

    Figure  13.   Comparison between seismic response spectrum and code design response spectra

    IV—Imperial Valley-02 (1940) wave; KC—Kern County (1952) wave; AR—Artifical wave; T1—Fundamental natural vibration period of the ECC shell-RC composite pier column

    图  14   地震波作用下墩顶位移时程曲线

    Figure  14.   Pier top displacement time history curves under different ground motions

    图  15   IV作用下混凝土PEEQ损伤云图

    Figure  15.   PEEQ of concrete for piers subjected to IV

    图  16   不同地震波作用下各墩柱滞回曲线

    Figure  16.   Hysteresis curves of the specimens under different waves

    图  17   ECC壳(节段)-RC组合墩柱的弯矩分布

    Figure  17.   Moment distribution of ECC shell (segment)-RC composite pier

    L0—Height of the concrete segment; F—Horizontal load; N—Axial load; LECC—Height of the ECC shell-RC composite segment; MA—Bending moment of critical section A; MB—Bending moment of critical section B; My,RC—Yield bending moment of RC pier; My,ECC-RC—Yield bending moment of the ECC shell-RC composite section; L*—Critial height of ECC shell-RC composite segment; L—Total height of the composite pier

    图  18   不同ECC壳-RC组合节段高度时钢筋应变

    Figure  18.   Rebar strain with different ECC shell-RC composite segment height

    LE—Logarithmic strain

    表  1   试件具体信息

    Table  1   Specific information of the specimens

    Specimen H/mm b×h/mm2 he/mm t/mm
    S1 1 400 300×300 400 150
    S2 100
    Notes: H—Pier height; b—Section width; h—Section height; he—ECC height; t—ECC shell thickness.
    下载: 导出CSV

    表  2   试件抗震性能指标

    Table  2   Seismic performance index of the specimen

    Specimen Yield displacement/mm Yield load/kN Peak load/kN Ultimate displacement/mm Ultimate load/kN
    S1 Positive Test[36] 8.20 65.46 86.89 60 65.77
    FEM 7.04 78.65 89.31 60 67.23
    Error 14.10% −20.15% −2.79% 0% −2.22%
    Negative Test[36] −9.20 −68.47 −86.85 −60 −71.90
    FEM −7.26 −70.67 −81.26 −60 −66.42
    Error 21.09% −3.22% 6.44% 0% 7.62%
    S2 Positive Test[16] 7.39 64.24 87.20 60 60.37
    FEM 8.42 76.14 86.85 60 69.64
    Error −13.94% −18.52% 0.40% 0% −15.36%
    Negative Test[16] −8.31 −63.16 −87.35 −60 −66.48
    FEM −7.27 −70.76 −80.34 −60 −68.84
    Error 12.52% −12.03% 8.03% 0% −3.55%
    下载: 导出CSV

    表  3   ECC壳-RC组合墩柱基准设计参数

    Table  3   Benchmark parameters of ECC shell-RC composite pier column

    Parts z×b×h/mm3 Material Longitudinal reinforcement Stirrup (Encrypted zone) Axial compression ratio n
    Pier 2000×450×450 C40/E40 12C18 A10@100 (A10@50) 0.2
    Cushion cap 700×1400×700 C40 A10@100
    Note: z—Height of the part.
    下载: 导出CSV

    表  4   各墩柱墩顶位移峰值

    Table  4   Peak value of displacement at the top of the pier

    Pier type Peak value of displacement/mm
    IV KC AR
    RC pier 58.28 29.24 40.77
    ECC shell-RC composite pier 42.61 22.98 36.65
    下载: 导出CSV

    表  5   墩底剪力峰值

    Table  5   Peak value of shear force at the pier bottom

    Pier type Peak value of shear force/kN
    IV KC AR
    RC pier 237.64 191.99 181.90
    ECC shell-RC composite pier 270.59 225.56 216.94
    下载: 导出CSV

    表  6   不同地震波各墩柱最大混凝土塑性损伤PEEQ值

    Table  6   Maximum PEEQ value of the concrete of each specimen subjected to ground motions

    Pier type Maximum PEEQ value/10−2
    IV KC AR
    RC pier 2.10 1.70 1.50
    ECC shell-RC composite pier 1.71 1.21 1.17
    下载: 导出CSV
  • [1]

    LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. DOI: 10.1061/(ASCE)0733-9399(1992)118:11(2246)

    [2] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8): 1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1957-1967(in Chinese).

    [3]

    XU L, PAN J L, CAI J. Seismic performance of precast RC and RC/ECC composite columns with grouted sleeve connections[J]. Engineering Structures, 2019, 188: 104-110. DOI: 10.1016/j.engstruct.2019.03.022

    [4] 潘金龙. 基于高延性水泥基复合材料的结构性能提升技术[M]. 北京: 中国建筑工业出版社, 2020: 1-25.

    PAN Jinlong. Structural performance improvement technology based on high ductility cementitious composites[M]. Beijing: China Architecture and Building Press, 2020: 1-25(in Chinese).

    [5]

    YUAN F, PAN J, WU Y. Numerical study on flexural behaviors of steel reinforced engineered cementitious composite (ECC) and ECC/concrete composite beams[J]. Science China Technological Sciences, 2014, 57(3): 637-645. DOI: 10.1007/s11431-014-5478-4

    [6]

    ZHANG R, MATSUMOTO K, HIRATA T, et al. Shear behavior of polypropylene fiber reinforced ECC beams with varying shear reinforcement ratios[J]. Journal of JSCE, 2014, 2(1): 39-53. DOI: 10.2208/journalofjsce.2.1_39

    [7] 陈全胜, 侯圣均, 蒋晨晨, 等. 钢-混凝土-ECC组合梁受弯性能试验研究与有限元分析[J]. 建筑结构学报, 2022, 43(S1): 136-146.

    CHEN Quansheng, HOU Shengjun, JIANG Chenchen, et al. Experimental research and FEA on bearing capacity under negativemoment of steel-concrete-ECC composite beams[J]. Journal of Building Structures, 2022, 43(S1): 136-146(in Chinese).

    [8] 白亮, 张雨航, 梁兴文, 等. 压型钢板-高延性水泥基材料组合楼板纵向剪切性能及承载力研究[J]. 工程力学, 2023, 40(6): 172-181.

    BAI Liang, ZHANG Yuhang, LIANG Xingwen, et al. Investigation on longitudinal shear behavior and bearing capacity of profiled steel sheeting and ECC composite slabs[J]. Engineering Mechanics, 2023, 40(6): 172-181(in Chinese).

    [9] 廖桥, 李碧雄, 章一萍. 超高强钢筋ECC梁受弯性能试验研究及参数分析[J]. 应用基础与工程科学学报, 2022, 30(1): 121-133.

    LIAO Qiao, LI Bixiong, ZHANG Yiping. Experimental study and parametric analysis of flexural behaviors of ultra high strength rebar reinforced ECC beams[J]. Journal of Basic Science and Engineering, 2022, 30(1): 121-133(in Chinese).

    [10]

    XU L, PAN J L, LU C, et al. Development mechanism of plastic hinge in reinforced engineered cementitious composite beams under monotonic loading[J]. Structural Concrete, 2019, 20(1): 252-266. DOI: 10.1002/suco.201800009

    [11]

    BILLINGTON S L, YOON J K. Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete[J]. Journal of Bridge Engineering, 2004, 9(4): 353-363. DOI: 10.1061/(ASCE)1084-0702(2004)9:4(353)

    [12]

    CHO C, KIM Y, FEO L, et al. Cyclic responses of reinforced concrete composite columns strengthened in the plastic hinge region by HPFRC mortar[J]. Composite Structures, 2012, 94(7): 2246-2253. DOI: 10.1016/j.compstruct.2012.01.025

    [13]

    SHAN Q, PAN J, CHEN J. Mechanical behaviors of steel reinforced ECC/concrete composite columns under combined vertical and horizontal loading[J]. Journal of Southeast University (English Edition), 2015, 31(2): 259-265.

    [14]

    MOHEBBI A, SAIIDI M, ITANI A. Shake table studies and analysis of a precast two-column bent with advanced materials and pocket connections[J]. Journal of Bridge Engineering, 2018, 23(7): 04018046. DOI: 10.1061/(ASCE)BE.1943-5592.0001247

    [15]

    XU L, PAN J L, CHEN J H. Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading[J]. Journal of Materials in Civil Engineering, 2017, 29(9): 1-24.

    [16]

    ZHANG R, MENG Q L, SHUI Q J, et al. Cyclic response of RC composite bridge columns with precast PP-ECC jackets in the region of plastic hinges[J]. Composite Structures, 2019, 221: 110844. DOI: 10.1016/j.compstruct.2019.04.016

    [17]

    ZHANG R, ZHAO R, LIU Z L, et al. Cyclic behavior of existing flexure-dominated RC bridge columns retrofitted by ECC jackets in the region of plastic hinge[J]. Engineering Structures, 2022, 269: 114820. DOI: 10.1016/j.engstruct.2022.114820

    [18]

    LI X, CHEN K D, HU P, et al. Effect of ECC jackets for enhancing the lateral cyclic behavior of RC bridge columns[J]. Engineering Structures, 2020, 219: 110714. DOI: 10.1016/j.engstruct.2020.110714

    [19] 王新玲, 李世伟, 罗鹏程, 等. 水泥基复合材料加固小偏心受压钢筋混凝土柱承载力[J]. 复合材料学报, 2023, 40(3): 1773-1784.

    WANG Xinling, LI Shiwei, LUO Pengcheng, et al. Bearing capacity of reinforced concrete columns strengthened by engineered cementitious composite under small eccentric compression load[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1773-1784(in Chinese).

    [20] 王新玲, 李赟璞, 李苗浩夫, 等. 高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验[J]. 复合材料学报, 2022, 39(5): 2308-2317.

    WANG Xinling, LI Yunpu, LIMIAO Haofu, et al. Compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2308-2317(in Chinese).

    [21]

    DENG M K, ZHANG Y X, LI Q Q. Shear strengthening of RC short columns with ECC jacket: Cyclic behavior tests[J]. Engineering Structures, 2018, 160: 535-545. DOI: 10.1016/j.engstruct.2018.01.061

    [22]

    DI J, FAN J H, ZHOU X H, et al, Hysteretic behavior of composite bridge columns with plastic hinge enhanced by engineered cementitious composite jacket for seismic resistance[J]. Engineering Structures, 2022, 251: 113532.

    [23] 程彩霞. PVA纤维水泥基复合材料增强框架节点抗震性能研究[D]. 武汉: 湖北工业大学, 2009.

    CHENG Caixia. A study on the earthquake-resistant behavior of the PVA fiber cementitious composite reinforced frame joints[D]. Wuhan: Hubei University of Technology, 2009(in Chinese).

    [24]

    SAID S H, RAZAK H A. Structural behavior of RC engineered cementitious composite (ECC) exterior beam-column joints under reversed cyclic loading[J]. Construction and Building Materials, 2016, 107: 226-234. DOI: 10.1016/j.conbuildmat.2016.01.001

    [25] 董胜, 陈盈. 后浇高韧性水泥基复合材料预制混凝土节点有限元分析[J]. 施工技术, 2017, 46(3): 55-60.

    DONG Sheng, CHEN Ying. Finite element analysis for precast concrete joints with engineered cementitious composite material[J]. Construction Technology, 2017, 46(3): 55-60(in Chinese).

    [26]

    SURYANTO B, TAMBUSAY A, SUPROBO P, et al. Seismic performance of exterior beam-column joints constructed with engineered cementitious composite: Comparison with ordinary and steel fibre reinforced concrete[J]. Engineering Structures, 2022, 250: 113377. DOI: 10.1016/j.engstruct.2021.113377

    [27]

    ZHANG R, MATSUMOTO K, HIRATA T, et al. Application of PP-ECC in beam-column joint connections of rigid-framed railway bridges to reduce transverse reinforcements[J]. Engineering Structures, 2015, 86: 146-156. DOI: 10.1016/j.engstruct.2015.01.005

    [28] 丁梦佳, 许维炳, 王瑾, 等. 一种灌浆套筒连接的装配式ECC-RC混合柱: 中国, 202110242254.4[P]. 2022-07-19.

    DING Mengjia, XU Weibing, WANG Jin, et al. The utility model relates to an assembled ECC-RC mixed column with grouting sleeve connection: CN, 202110242254.4[P]. 2022-07-19(in Chinese).

    [29]

    ZHANG Y, DENG M, LI T, et al. Strengthening of flexure-dominate RC columns with ECC jackets: Experiment and analysis[J]. Engineering Structures, 2021, 231: 111809.

    [30] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture and Building Press, 2010(in Chinese).

    [31]

    KANDA T, LIN Z, LI V C. Modeling of tensile stress-strain relation of pseudo strain-hardening cementitious composites[J]. Journal of Materials in Civil Engineering, 2011, 12(2): 147-156.

    [32] 温丛格. 工程纤维增强水泥基复合材料PVA-ECC力学性能研究[D]. 焦作: 河南理工大学, 2015.

    WEN Congge. Study on mechanical performance of engineering fiber reinforced cementitious composites PVA-ECC[D]. Jiaozuo: Master Dissertation of Henan Polytechnic University, 2015(in Chinese).

    [33] 田俊. 超高韧性水泥基复合材料加固混凝土结构的界面力学性能与耐久性能研究[D]. 南京: 东南大学, 2017.

    TIAN Jun. Experimental study on mechanical properties and durability of ultra high toughness cementitious composite-to-concrete interface[D]. Nanjing: Doctoral Dissertation of Southeast University, 2017(in Chinese).

    [34] 方自虎, 周海俊, 赖少颖, 等. 循环荷载下钢筋混凝土ABAQUS粘结滑移单元[J]. 武汉大学学报(工学版), 2014, 47(4): 527-531.

    FANG Zihu, ZHOU Haijun, LAI Shaoying, et al. ABAQUS bond-slip element of reinforced concrete under cyclic loads[J]. Engineering Journal of Wuhan University, 2014, 47(4): 527-531(in Chinese).

    [35]

    LI C, HAO H, BI K M. Seismic performance of precast concrete-filled circular tube segmental column under biaxial lateral cyclic loadings[J]. Bulletin of Earthquake Engineering, 2019, 17: 271-296. DOI: 10.1007/s10518-018-0443-4

    [36] 陈科旭. PP-ECC墩柱抗震性能研究[D]. 绵阳: 西南科技大学, 2019.

    CHEN Kexu. Research on seismic behavior of PP-ECC piers[D]. Mianyang: Master Dissertation of Southwest University of Science and Technology, 2019(in Chinese).

    [37]

    DING M, XU W, WANG J, et al. Seismic performance of prefabricated concrete columns with grouted sleeve connections, and a deformation-capacity estimation method[J]. Journal of Building Engineering, 2022, 55: 104722. DOI: 10.1016/j.jobe.2022.104722

    [38] 中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.

    Ministry of Transport of the People's Republic of China. Specifications for seismic design of highway bridges: JTG/T 2231-01—2020[S]. Beijing: China Communication Press, 2020(in Chinese).

    [39] 邓江东, 彭展翼. 功能梯度混凝土受弯构件形成机制和力学性能研究[J]. 工程力学, 2023, 40(9): 74-80.

    DENG Jiangdong, PENG Zhanyi. Formulation mechanism and mechanical performance of functionally graded flexural concrete members[J]. Engineering Mechanics, 2023, 40(9): 74-80(in Chinese).

    [40] 邓江东, 杨思远, 郭春泉. 梯级GFRP筋混凝土受弯构件多塑性区形成机制[J]. 复合材料学报, 2023, 40(11): 6324-6335.

    DENG Jiangdong, YANG Siyuan, GUO Chunquan. Formation mechanism of multi-plastic regions in concrete flexural members with graded GFRP bars[J]. Acta Materiae Compositae Sinica. 2023, 40(11): 6324-6335(in Chinese).

  • 期刊类型引用(1)

    1. 李登高,刘成霞. 有限元分析技术在织物力学性能领域的应用. 现代纺织技术. 2024(06): 129-141 . 百度学术

    其他类型引用(0)

图(18)  /  表(6)
计量
  • 文章访问数:  510
  • HTML全文浏览量:  186
  • PDF下载量:  44
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-12-07
  • 录用日期:  2023-12-28
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-06-30

目录

/

返回文章
返回