Processing math: 100%

ECC单轴拉伸疲劳变形特性及寿命预测

霍海峰, 刘汉磊, 杨雅静, 温升亮, 李长辉, 陈宇

霍海峰, 刘汉磊, 杨雅静, 等. ECC单轴拉伸疲劳变形特性及寿命预测[J]. 复合材料学报, 2022, 39(7): 3404-3414. DOI: 10.13801/j.cnki.fhclxb.20210729.002
引用本文: 霍海峰, 刘汉磊, 杨雅静, 等. ECC单轴拉伸疲劳变形特性及寿命预测[J]. 复合材料学报, 2022, 39(7): 3404-3414. DOI: 10.13801/j.cnki.fhclxb.20210729.002
HUO Haifeng, LIU Hanlei, YANG Yajing, et al. Fatigue deformation characteristics and life prediction of ECC under uniaxial tension[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3404-3414. DOI: 10.13801/j.cnki.fhclxb.20210729.002
Citation: HUO Haifeng, LIU Hanlei, YANG Yajing, et al. Fatigue deformation characteristics and life prediction of ECC under uniaxial tension[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3404-3414. DOI: 10.13801/j.cnki.fhclxb.20210729.002

ECC单轴拉伸疲劳变形特性及寿命预测

基金项目: 国家重点研发计划项目(NO.2020YFB1600100);中央高校基金(3122019106);天津交通运输委员会面上项目(2019-18)
详细信息
    通讯作者:

    刘汉磊,硕士,研究方向为复合材料的工程应用 E-mail:lhlcsy@126.com

  • 中图分类号: TU5

Fatigue deformation characteristics and life prediction of ECC under uniaxial tension

  • 摘要: 工程水泥基复合材料(ECC)多用于结构的抗震补强,其疲劳性能是工程中关注的重点。利用疲劳试验机对ECC试件进行单轴拉伸循环加载试验,分析了动力变形、损伤模型和疲劳寿命的发展规律。结果表明:单向拉伸疲劳荷载下,ECC应力-应变曲线呈疏-密-疏特点;残余应变呈三阶段发展,采用六次多项式进行拟合描述,相关系数基本大于0.9;针对第二阶段定义应变率及应变增长率两个物理量,发现拉应力比越高,应变率越大,第二阶段循环比越短;应变增长率在0.0028~0.0098之间变化,其随着拉应力比的增加而减小。用疲劳变形模量定义损伤变量,建立以循环寿命比n/N=0.7为分界点的两阶段疲劳损伤演变方程。针对应力比S=0.85进行验证,评估疲劳损伤程度并预估剩余寿命,其与试验结果对比相关性较高。
    Abstract: Engineering cementitious composite (ECC) is widely used in structural seismic strengthening, and its fatigue performance is the focus of engineering. The uniaxial tensile cyclic loading test of ECC specimens was carried out by fatigue testing machine, and the development law of dynamic deformation, damage model and fatigue life was analyzed. The results show that under uniaxial tensile fatigue load, the stress-strain curve of ECC is sparse-dense-sparse. Residual strain develops in three stages and is described by six polynomial fitting. The correlation coefficient is basically greater than 0.9. Two physical quantities, strain rate and strain growth rate, are defined for the second stage. It is found that the higher the tensile stress ratio is, the larger the strain rate is and the shorter the cycle ratio is in the second stage. Strain growth rate varies from 0.0028 to 0.0098 and decreases with the increase of tensile stress ratio. The damage variable is defined by fatigue deformation modulus, and the two-stage fatigue damage evolution equation is established with the cycle life ratio n/N=0.7. The stress ratio S=0.85 was verified, and the fatigue damage degree of the specimen was evaluated and the remaining life was predicted, which was highly correlated with the test results.
  • 图  1   试件立体尺寸图(单位:mm)

    Figure  1.   Three-dimensional size drawing of test piece (Units: mm)

    图  2   试件拌和图

    Figure  2.   Sample mixing diagram

    图  3   试验概况图

    Figure  3.   Test overview diagram

    σd—Dynamic stress amplitude

    图  4   ECC不同应力水平下的循环应力-应变曲线

    Figure  4.   Cyclic stress-strain curves of ECC under different stress levels

    σ—Stress; ε—Strain; S—Stress ratio

    图  5   不同应力比ECC残余应变发展图

    Figure  5.   Development diagram of residual strain of ECC with different stress ratios

    图  6   ECC应变云图

    Figure  6.   Strain nephogram of ECC

    图  7   不同应力比下ECC应变与循环次数的线性关系图

    Figure  7.   Linear relationship between strain and cycle times of ECC under different stress ratios

    εt—Strain rate

    图  8   ECC疲劳模量比随循环比变化曲线

    Figure  8.   Change curve of ECC fatigue modulus ratio with recycle ratio

    图  9   不同应力比下ECC损伤变量演变曲线

    Figure  9.   Damage variable evolution curves of ECC under different stress ratios

    图  10   不同应力比下ECC两阶段损伤变量拟合曲线

    Figure  10.   Two-stage damage variable fitting curves of ECC under different stress ratios

    表  1   聚乙烯醇(PVA)纤维的各项性能指标

    Table  1   Various performance indexes of polyvinyl alcohol (PVA) fiber

    Length/mmDiameter/μmLength-diameter ratio/103Tensile strength/MPaElastic modulus/GPaElongation/%Density/(g·cm−3)
    12390.31160039170.91
    下载: 导出CSV

    表  2   工程水泥基复合材料(ECC)试件配合比(kg/m3)

    Table  2   Mix ratio of engineered cementitious composite (ECC) specimens (kg/m3)

    CementWaterSandPVA fiberFly ashWater-reducing admixture
    380 190 190 26 253 10.1
    下载: 导出CSV

    表  3   ECC残余应变拟合六次方程相关参数

    Table  3   ECC residual strain fitting six-order equation related parameters

    abcdefgR2
    S=0.95 2.18 −6.15 6.57 −3.27 0.74 −0.05 0 0.993
    S=0.90 0.02 0.48 −1.22 1.1 −0.43 0.07 0 0.973
    S=0.85 0.91 −2.16 1.67 −0.37 −0.09 0.05 0 0.95
    S=0.80 −0.035 0.4 −0.874 0.7654 −0.307 0.05969 0.00043 0.9268
    S=0.75 −0.934 3.57 −5.129 3.47 −1.12 0.161 0.0059 0.8468
    S=0.70 −1.54 5.23 −6.78 4.20 −1.27 0.18 0 0.950
    Notes: S—Stress ratio; a-g—Equation coefficients; R2—Correlation coefficient.
    下载: 导出CSV

    表  4   ECC残余应变拟合双对数方程相关参数

    Table  4   Related parameters of ECC residual strain fitting double logarithmic equation

    abR2
    S=0.95 0.59 6.7 0.984
    S=0.90 0.82 6.04 0.994
    S=0.85 0.74 5.89 0.999
    S=0.80 0.627 5.892 0.999
    S=0.75 0.885 5.18 0.998
    S=0.70 0.83 5.15 0.997
    下载: 导出CSV

    表  5   不同应力比下的ECC第二阶段应变增长率

    Table  5   The second-stage strain growth rate of ECC under different stress ratios

    SStrain growth rate ε
    0.95 0.0028
    0.90 0.0042
    0.85 0.0045
    0.80 0.0055
    0.75 0.0068
    0.70 0.0098
    下载: 导出CSV

    表  6   ECC试验方程拟合参数与相关系数

    Table  6   Fitting parameters and correlation coefficients of test equations for ECC

    Sa1b1c1R2D0.7a2b2R2
    0.95 0.28 19.41 −0.11 0.971 0.642 0.01 4.04 0.997
    0.90 0.25 37.04 −0.04 0.978 0.783 3.26×10-14 29.52 0.996
    0.85 0.06 6145.94 0.19 0.999 0.695 3.64×10-39 87.25 0.977
    0.80 0.05 84328.71 0.10 0.903 0.653 4.26×10-20 43.37 0.935
    0.75 0.07 25819.68 0.05 0.964 0.738 1.51×10-24 53.26 0.842
    0.70 0.21 37.81 0.02 0.925 0.713 8.57×10-5 8.08 0.995
    Notes: S—Stress ratio; a1, a2, b1, b2, c1—Equation coefficients; R2—Correlation coefficient.
    下载: 导出CSV

    表  7   ECC残余应变计算与疲劳寿命预测

    Table  7   Residual strain calculation and fatigue life prediction of ECC

    Cycle index nResidual strainLife prediction
    1000 0.005580 4615.5
    2 000 0.006567 4614.5
    3000 0.007074 6264.4
    4000 0.007896 5048.0
    下载: 导出CSV

    表  8   ECC疲劳损伤变量计算与预测

    Table  8   Calculation and prediction of fatigue damage variables of ECC

    Model calculationn/ND*Test resultn/ND
    n=1 000 0.21667 0.62169 n=1 000 0.1979 0.61626
    n=2 000 0.43343 0.66322 n=2 000 0.3958 0.65783
    n=3 000 0.47890 0.66926 n=3 000 0.5937 0.68214
    n=4 000 0.79239 0.69500 n=4 000 0.7916 0.69500
    Notes: D—Damage variables; D*—Prediction of damage variables.
    下载: 导出CSV

    表  9   ECC模型预测结果与试验结果对比

    Table  9   Comparison of model prediction results and test results of ECC

    Stress level S=0.85Life prediction/
    Test life
    Damage prediction/
    Test damage
    n=1000 0.9133 1.0088
    n=2000 0.9132 1.0082
    n=3000 1.2396 0.9812
    n=4000 0.9990 1.0000
    下载: 导出CSV
  • [1]

    LI V C. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,188(11):2246-2264.

    [2]

    LI V C. Engineered cementitious composites (ECC)-tailored composites through micromechanical modeling[M]. Montreal: Canadian Society for Civil Engineering, 1998.

    [3]

    LI H Y. Experimental study on the fatigue damage of high strength concrete under uniaxial compression[J]. Key Engineering Materials,2014(619):109-115.

    [4]

    KIM J, YI C, LEE S J, et al . Flexural fatigue behaviour of concrete under uniaxial and biaxial stress[J]. Magazine of Concrete Research,2013,65(12):757-764. DOI: 10.1680/macr.12.00215

    [5]

    KOLASE P K, DESAI A K. Experimental study on monotonic and fatigue behavior of polypropylene fiber-reinforced roller-compacted concrete with fly ash[J]. Road Materials and Pavement Design,2019,20(5):1096-1113.

    [6]

    CACHIM P B, FIGUEIRAS J A, PEREIRA P A A. Fatigue behavior of fiber-reinforced concrete in compression[J]. Cement and Concrete Composites,2002,24(2):211-217. DOI: 10.1016/S0958-9465(01)00019-1

    [7]

    CHEN X D, BU J W, FAN X Q, et al. Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension[J]. Construction and Building Materials,2017,133(2):367-375.

    [8] 邓明科, 杨铄, 梁兴文. 高延性混凝土单面加固构造柱约束砖砌体墙抗震性能试验研究[J]. 土木工程学报, 2018, 51(4):10-19.

    DENG Mingke, YANG Shuo, LIANG Xingwen. Experimental studies on seismic behavior of confined masonry walls strengthened with single HDC layer[J]. China Civil Engineering Journal,2018,51(4):10-19(in Chinese).

    [9] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3):159-166. DOI: 10.6052/j.issn.1000-4750.2016.11.0888

    DENG Mingke, ZHANG Yangxi, HU Hongbo. Experimental study and calculation of the shear capacity of RC columns strengthened with high ductile concrete[J]. Engineering Mechanics,2018,35(3):159-166(in Chinese). DOI: 10.6052/j.issn.1000-4750.2016.11.0888

    [10] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2017, 38(06):86-94.

    DENG Mingke, ZHANG Yangxi, HU Hongbo. Experimental study on seismic behavior of reinforced concrete column strengthened with high ductile concrete[J]. Journal of Building Structures,2017,38(06):86-94(in Chinese).

    [11] 邓明科, 刘华政, 马福栋, 等. 聚乙烯醇纤维改性高延性混凝土双面剪切试验及剪切韧性评价方法[J]. 复合材料学报, 2020, 37(02):461-471.

    DENG Mingke, LIU Huazheng, MA Fudong, et al. Double shear experiment of highly ductile concrete modified by polyvingl alcohol and shear toughness evaluation method[J]. Acta Materiae Compositae Sinica,2020,37(02):461-471(in Chinese).

    [12] 邓明科, 成媛, 翁世强, 等. 高温后高延性混凝土的抗压性能及微观结构[J]. 复合材料学报, 2020, 37(4):985-996.

    DENG Mingke, CHENG Yuan, WENG Shiqiang, et al. Compressive properties and micro-structure of high ductility concrete exposed to elevated temperature[J]. Acta Materiae Compositae Sinica,2020,37(4):985-996(in Chinese).

    [13] 邓明科, 潘姣姣, 梁兴文. 高延性混凝土与钢筋黏结性能的试验研究[J]. 土木工程学报, 2018, 51(3):19-26+35.

    DENG Mingke, PAN Jiaojiao, LIANG Xingwen. Experimental study on bond behavior between steel bar and high ductility concrete[J]. China Civil Engineering Journal,2018,51(3):19-26+35(in Chinese).

    [14] 宋玉普, 吕培印. 混凝土轴心拉-压疲劳性能研究[J]. 建筑结构学报, 2002, 23(4):36-41. DOI: 10.3321/j.issn:1000-6869.2002.04.007

    SONG Yupu, LV Peiyin. Study on the behavior of concrete under axial tension-compression fatigue loading[J]. Journal of Building Structures,2002,23(4):36-41(in Chinese). DOI: 10.3321/j.issn:1000-6869.2002.04.007

    [15] 余江滔, 许万里, 张远淼. ECC-混凝土黏结界面断裂试验研究[J]. 建筑材料学报, 2015, 18(6):958-963+970. DOI: 10.3969/j.issn.1007-9629.2015.06.008

    YU Jiangtao, XU Wanli, ZHANG Yuanmiao. Experiment study on fracture property of ECC-concrete interface[J]. Journal of Building Materials,2015,18(6):958-963+970(in Chinese). DOI: 10.3969/j.issn.1007-9629.2015.06.008

    [16] 林建辉, 余江滔, LI Victor C. PVA纤维增强水泥基复合材料热处理后的力学性能[J]. 复合材料学报, 2016, 33(01):116-122.

    LIN Jianhui, YU Jiangtao, LI Victor C. Mechanical properties of PVA fiber reinforced engineered cementitious composite after thermal treatment[J]. Acta Materiae Compositae Sinica,2016,33(01):116-122(in Chinese).

    [17] 王玉清, 刘潇, 高元明, 等. 不同纤维掺量下聚乙烯醇纤维增强工程水泥复合材料梁剪切韧性试验[J]. 复合材料学报, 2019, 36(8):1968-1976.

    WANG Yuqing, LIU Xiao, GAO Yuanming, et al. Experimental study on shear toughness of polyvinyl alcohol fiber reinforced engineered cementitious composite beams with different fiber contents[J]. Acta Materiae Compositae Sinica,2019,36(8):1968-1976(in Chinese).

    [18] 王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维/水泥复合材料徐变性能试验[J]. 复合材料学报, 2020, 37(01):205-213.

    WANG Yuqing, SUN Liang, LIU Shuguang, et al. Experimental study on creep performance of polyvinyl alcohol fiber/engineered cementitious composite with different fiber contents[J]. Acta Materiae Compositae Sinica,2020,37(01):205-213(in Chinese).

    [19] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(08):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(08):1957-1967(in Chinese).

    [20] 韦选纯, 汤盛文, 何真, 等. 聚乙烯醇纤维增强钢渣粉-水泥复合材料基本力学性能及微观结构[J]. 复合材料学报, 2019, 36(8):1918-1925.

    WEI Xuanchun, TANG Shengwen, HE Zhen, et al. Mechanical and microstructural characteristics of polyvinyl alcohol fiber reinforced cementitious composites containing steel slag powder[J]. Acta Materiae Compositae Sinica,2019,36(8):1918-1925(in Chinese).

    [21] 王振波, 韩硕, 孙鹏, 等. 混杂纤维ECC高温后力学特性与微观结构变化[J]. 华中科技大学学报(自然科学版), 2021, 49(5):74-79.

    WANG Zhengbo, HAN Shuo, SUN Peng, et al. Mechanical properties of hybrid fiber reinforced engineered cementitious composites under uniaxial compression[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2021,49(5):74-79(in Chinese).

    [22] 崔涛, 何浩祥, 闫维明, 等. ECC与既有混凝土结合面的抗剪性能[J]. 建筑材料学报, 2020, 23(5):1030-1037. DOI: 10.3969/j.issn.1007-9629.2020.05.006

    CUI Tao, HE Haoxiang, YAN Weiming, et al. Shear resistance property of ECC-existing concrete interface[J]. Journal of Building Materials,2020,23(5):1030-1037(in Chinese). DOI: 10.3969/j.issn.1007-9629.2020.05.006

    [23] 潘金龙, 何佶轩, 王路平, 等. ECC双轴压力学性能及破坏准则试验研究[J]. 工程力学, 2016, 33(6):186-193.

    PAN Jinlong, HE Jixuan, WANG Luping, et al. Experimental study on mechanical behaviors and failure criterion of engineered cementitious composites under biaxial compression[J]. Engineering Mechanics,2016,33(6):186-193(in Chinese).

    [24] 朱劲松. 混凝土双轴疲劳试验与破坏预测理论研究[D]. 大连: 大连理工大学, 2003.

    ZHU Jinsong. Expermental study on fatigue properties of plain concrete under biaxial stress states and theories on failure prediction[D]. Dalian: Dalian University of Technology, 2003 (in Chinese).

    [25] 刘问, 徐世烺, 李庆华. 等幅疲劳荷载作用下超高韧性水泥基复合材料弯曲疲劳寿命试验研究[J]. 建筑结构学报, 2012, 33(1):119-127.

    LIU Wen, XU Shilang, LI Qinghua. Study on flexural fatigue life of ultra-high toughness cementitious composites under constant amplitude cyclic loading[J]. Journal of Building Structures,2012,33(1):119-127(in Chinese).

    [26] 中国建筑材料联合会. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.

    China Building Material Council. Standard test method for the mechanical properties of the ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Material Industry Publishing House, 2018(in Chinese).

    [27] 中国建筑科学研究院. 普通混凝土拌合物性能试验方法标准: GB/T 50081—2016[S]. 北京: 中国建筑工业出版社, 2016.

    China Academy of Building Research. Standard for test method of performance on ordinary fresh concrete: GB/T 50081—2016[S]. Beijing: China Architecture & Building Press, 2016(in Chinese).

    [28] 张滨生, 吴科如. 水泥混凝土疲劳破坏的损伤力学分析[J]. 同济大学学报, 1989, 17(1): 59-69.

    ZHNAG Bingsheng, WU Keru. Damage mechanics analysis of fatigue failure of cement concrete[J]. Journal of Tongji University, 1989, 17(1):59-69(in Chinese).

    [29] 勒迈特 J. 损伤力学教程[M]. 倪金刚, 陶春虎, 译. 北京: 科学出版社, 1996.

    LEMAITRE J. Damage mechanics[M]. Translated by NI Jingang, TAO Chunhu. Beijing: Science Press, 1996 (in Chinese).

    [30] 杨健辉. 侧压下混凝土静态受拉与受拉疲劳性能研究[D]. 大连: 大连理工大学, 2003.

    YANG Jianhui. Study on static and fatigue behaviors in tension for concrete under lateral pressures[D]. Dalian: Dalian University of Technology, 2003(in Chinese).

    [31] 林燕清. 混凝土疲劳累积损伤与力学性能劣化研究[D]. 哈尔滨: 哈尔滨工业大学, 1998.

    LIN Yanqing. Research on accumulative fatigue damage and deterioration of mechanical properties of concrete[D]. Harbin: Harbin Institute of Technology, 1998(in Chinese).

  • 期刊类型引用(2)

    1. 胡德鑫,单玉玺,王海亮,李东旭,张毅. 颗粒负载氧化石墨烯复合水泥基材料的微观结构及自修复性能. 复合材料学报. 2024(06): 3079-3091 . 本站查看
    2. 吴磊,吕生华,李泽雄,李尧,刘雷鹏. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响. 复合材料学报. 2023(04): 2296-2307 . 本站查看

    其他类型引用(2)

图(10)  /  表(9)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-07-16
  • 录用日期:  2021-07-19
  • 网络出版日期:  2021-07-28
  • 刊出日期:  2022-07-29

目录

    /

    返回文章
    返回