Numerical simulation of heat-flow-solid multi-field strong coupling in curing process of variable cross-section composite structures based on the resin flow
-
摘要: 在考虑树脂流动对固化温度场影响的基础上,将树脂流动引入经典热-化学模型,并在考虑了固化过程材料性能时变特性条件下,建立了复合材料热-流-固多场强耦合有限元模型。通过对比文献中未考虑树脂流动对温度场的影响,本文所建模型温度场较实际结果的最大温差更低,厚度密实精度更高,模型可靠性更好。基于所建热-流-固强耦合有限元模型,对变截面复合材料结构固化过程进行数值仿真。研究发现,变截面复合材料结构较厚区域存在明显温度场、固化度场及树脂流场分布梯度,纤维体积分数分布不均性较大,这与结构不同区域的厚度、固化过程温度传递滞后及局部树脂流动受固化效应不同步产生的影响有关。变截面复合材料结构厚度由3.52 mm增加至42.24 mm,截面最大温差由0.3℃增加到34.3℃,纤维体积分数分布不均匀性由0.1%增加到1.3%。Abstract: On the basis of considering the influence of resin flow on the curing temperature field, the resin flow was introduced into the classical thermo chemical model. In addition, in consideration of the time-varying characteristics of material properties during curing process, the heat-fluid-solid multi-field strongly coupled finite element model was established. It can be found through the comparison with the references in which the effect of resin flow on the temperature field is not considered, the maximum temperature difference is lower, the thickness accuracy is higher, and the model reliability is better. Based on the established heat-fluid-solid strongly coupled finite element model, the curing process of composite structure with variable thickness section was numerically simulated. It is found that the obvious distribution gradient of temperature field, curing degree field and resin flow field exists in the thicker composite structure, and the distribution of fiber volume fraction is uneven. This is related to the structure thickness, the temperature transfer lag of different zones and the influence of the local resin flow on the effects of curing. With the thickness of variable cross-section composite structures increasing from 3.52 mm to 42.24 mm, the maximum temperature increases from 0.3℃ to 34.3℃, and the nonuniformity of the fiber distribution increases from 0.1% to 1.3%.
-
Keywords:
- composite structure /
- curing process /
- resin flow /
- multi-field coupling /
- numerical simulation
-
-
期刊类型引用(15)
1. 吕晋书,马玉钦,庞利沙,王浩,张育洋,许怡,虢海银. 基于ANSYS的多尺度GO-CF/EP复合材料弯曲性能仿真及试验验证. 复旦学报(自然科学版). 2024(04): 481-491 . 百度学术
2. 李臻,贾紫茹,程嘉瑞. 功能化环氧树脂涂层的研究进展. 石油化工腐蚀与防护. 2022(01): 24-27 . 百度学术
3. 陈官,马传国,付泽浩,王静,王亚珍. 磁场作用下氧化石墨烯包覆羟基氧化铁增强碳纤维/环氧树脂复合材料的层间断裂韧性. 航空材料学报. 2022(03): 89-96 . 百度学术
4. 刘文军,严建龙,周川,李伟东,周玉敬,邱虹,白华,胡晓兰. 氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌. 复合材料学报. 2021(05): 1416-1425 . 本站查看
5. 刘义,李树锋,张策,闫民杰,孙颖颖. 碳纳米管对碳纤维复合材料防辐射性能的影响. 天津纺织科技. 2021(04): 40-43 . 百度学术
6. 刘刚,欧宝立,赵欣欣,彭彩茹,汪雨微. 共价功能化石墨烯超疏水防腐复合涂层材料的制备. 复合材料学报. 2021(10): 3236-3246 . 本站查看
7. 罗佳妮,李丽君,张晓思,邹汉涛,刘雪婷. 氧化石墨烯掺杂TiO_2改性活性炭纤维. 纺织学报. 2020(01): 8-14 . 百度学术
8. 刘桂艳. 氧化石墨烯/环氧树脂复合材料特性研究. 塑料科技. 2020(04): 10-13 . 百度学术
9. 段雯雯,王建军,辛振祥,王洪振. 环氧化天然橡胶改性石墨烯-炭黑/天然橡胶复合材料的制备及性能. 复合材料学报. 2020(07): 1667-1674 . 本站查看
10. 刘新,陈铎,何辉永,孙涛,武湛君. 热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料. 复合材料学报. 2020(08): 1904-1910 . 本站查看
11. 段瑛涛,武肖鹏,王智文,敬敏,栗娜,刘强,宁慧铭,胡宁. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能. 复合材料学报. 2020(10): 2418-2427 . 本站查看
12. 任志东,郝思嘉,邢悦,杨程,戴圣龙. 氧化石墨烯改性环氧树脂及其复合材料的性能. 航空材料学报. 2019(02): 25-32 . 百度学术
13. 李欣儒,郑力军,石华强,吴彦飞. P(AA-AM)复合石墨烯凝胶暂堵剂的研制及性能评价. 应用化工. 2019(08): 1805-1808 . 百度学术
14. 姜浩田,鞠艾洵,肖润平,王博,王欣,于显利. 氧化石墨烯/碳纤维复合材料的制备及表征. 安全与电磁兼容. 2019(04): 58-61 . 百度学术
15. 张策,徐志伟,郭兴峰. 基于微波等离子体方法生长的纳米碳对碳纤维/环氧树脂复合材料界面性能的影响. 复合材料学报. 2018(11): 2994-3000 . 本站查看
其他类型引用(12)
-
计量
- 文章访问数: 1549
- HTML全文浏览量: 81
- PDF下载量: 525
- 被引次数: 27