高强MXene/PPy@BC复合薄膜的制备及其电磁屏蔽性能

Preparation of high-strength MXene/PPy@BC composite films and their electromagnetic shielding properties

  • 摘要: 随着通信技术和移动电子设备的不断发展,电磁干扰问题日益突显,因此研发高性能的电磁屏蔽材料成为当前重要的研究方向。本文采用简单的真空过滤方法,成功制备了高导电性能的MXene/聚吡咯(PPy)@细菌纤维素(BC)薄膜(MPB),深入研究了MXene和PPy@BC不同比例对复合薄膜导电性能、力学性能和电磁屏蔽性能的影响规律。研究表明:当MXene和PPy@BC比例为3∶1时,电导率和X波段电磁屏蔽效能(EMI SE)均达到最大值,分别1209 S/cm和63.89 dB;此外,由于PPy@BC和MXene之间存在丰富的氢键相互作用,使得复合薄膜的最大抗拉强度可达到24.73 MPa,较纯MXene薄膜提升了近10倍。MPB薄膜优异的综合性能展示了其在下一代智能和可穿戴电子产品的EMI屏蔽方面的巨大潜力。

     

    Abstract: With the continuous development of communication technology and mobile electronic devices, electromagnetic interference problem is increasingly prominent, so the development of high performance electromagnetic shielding materials has become an important research direction. In this paper, a high conductivity MXene/polypyrrole (PPy)@bacterial cellulose (BC) film (MPB) with high conductivity was successfully prepared by a simple vacuum filtration method. The influence of different proportions of MXene and PPy@BC on the conductivity, mechanical properties and electromagnetic shielding performance of the composite film was deeply studied. The results show that when the ratio of MXene and PPy@BC is 3∶1, the conductivity and X-band electromagnetic shielding efficiency (EMI SE) reach the maximum, 1209 S/cm and 63.89 dB, respectively. In addition, due to the rich hydrogen bond interaction between PPy@BC and MXene, the maximum tensile strength of the composite film can reach 24.73 MPa, which is nearly 10 times higher than that of pure MXene film. The excellent comprehensive performance of MPB film shows its great potential in the EMI shielding of the next generation of intelligent and wearable electronic products.

     

/

返回文章
返回