留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风积沙混凝土盐冻多尺度劣化机制

李玉根 张慧梅 陈少杰 胡大伟 高炜

李玉根, 张慧梅, 陈少杰, 等. 风积沙混凝土盐冻多尺度劣化机制[J]. 复合材料学报, 2023, 40(4): 2331-2342. doi: 10.13801/j.cnki.fhclxb.20220607.004
引用本文: 李玉根, 张慧梅, 陈少杰, 等. 风积沙混凝土盐冻多尺度劣化机制[J]. 复合材料学报, 2023, 40(4): 2331-2342. doi: 10.13801/j.cnki.fhclxb.20220607.004
LI Yugen, ZHANG Huimei, CHEN Shaojie, et al. Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2331-2342. doi: 10.13801/j.cnki.fhclxb.20220607.004
Citation: LI Yugen, ZHANG Huimei, CHEN Shaojie, et al. Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2331-2342. doi: 10.13801/j.cnki.fhclxb.20220607.004

风积沙混凝土盐冻多尺度劣化机制

doi: 10.13801/j.cnki.fhclxb.20220607.004
基金项目: 国家自然科学基金(51868075);榆林市科技局项目(2019-101-6);榆林高新区科技局项目(CXY-2021-10);榆林学院博士启动基金(22GK11)
详细信息
    通讯作者:

    李玉根,博士,副教授,硕士生导师,研究方向为混凝土耐久性 E-mail: liyugen@yulinu.edu.cn

  • 中图分类号: TU528.01

Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition

Funds: National Natural Science Foundation of China (51868075); Yulin Science and Technology Bureau (2019-101-6); Yulin High-tech Zone Science and Technology Bureau (CXY-2021-10); Yulin University High Level Talent Research Start-up Fund (22GK11)
  • 摘要: 研究风积沙混凝土盐冻劣化规律,揭示劣化机制对其推广应用有重要指导意义。基于室内快速冻融试验及力学特性试验研究了风积沙混凝土盐冻劣化规律,结合SEM、NMR、XRD等表征技术及损伤力学理论从多尺度揭示了盐冻劣化机制。结果表明:风积沙影响混凝土的抗冻性,100%掺量风积沙混凝土强度低,但抗冻性最好。混凝土质量损失率及抗压强度损失率均随盐冻循环次数的增加而增大,相对动弹性模量随盐冻循环次数的增大而减小。风积沙混凝土的盐冻损伤是一个物理-化学过程,界面过渡区(ITZ)骨-浆剥离及附近砂浆基质开裂是导致其宏观物理、力学性能退化的主要原因。风积沙可以改变混凝土内部的孔隙结构及水分传输路径,进而影响孔隙饱和度及混凝土的抗盐冻性能。

     

  • 图  1  盐冻作用下风积沙混凝土表面剥落损伤过程

    Figure  1.  Apparent damage process of aeolian sand concrete under salt-frost conditions

    图  2  风积沙混凝土质量损失率与盐冻次数间的关系

    Figure  2.  Relationship between the mass loss rate and salt-frost number of aeolian sand concrete

    图  3  风积沙混凝土相对动弹性模量与盐冻次数间的关系

    Figure  3.  Relationship between the relative dynamic elastic modulus and salt-frost number of aeolian sand concrete

    图  4  风积沙混凝土抗压强度损失率与盐冻次数间的关系

    Figure  4.  Relationship between the compressive strength loss rate and salt-frost number of aeolian sand concrete

    图  5  盐冻前后RS-C、30%AS-C及100%AS-C内部微细观结构

    Figure  5.  Microscopic structure of RS-C, 30%AS-C and 100%AS-C before and after salt-frost

    图  6  风积沙混凝土中NaCl晶体微观形貌

    Figure  6.  Micro-structure of NaCl crystal in aeolian sand concrete

    图  7  盐冻循环前后RS-C及100%AS-C水化产物XRD图谱

    Figure  7.  XRD patterns of the hydration product of RS-C and 100%AS-C before and after salt-frost

    AFt—Ettringite; C-S-H—Calcium silicate hydrated

    图  8  盐冻作用前后RS-C及100%AS-C孔隙结构

    Figure  8.  Pore structure of RS-C and 100%AS-C before and after salt-frost

    图  9  风积沙混凝土损伤变量De(n)与盐冻次数n的关系

    Figure  9.  Relationship between the damage variable De(n) and salt-frost cycling number n of aeolian sand concrete

    R2—Correlation coefficient

    图  10  风积沙混凝土盐冻剥落损伤机制示意图

    Figure  10.  Scaling damage mechanism diagram of aeolian sand concrete under salt-frost conditions

    σ—Stress of ice layer; σc—Tensile stress of ice layer at crack tip; d—Thickness of ice layer

    图  11  风积沙混凝土盐冻内部损伤机制示意图

    Figure  11.  Internal damage mechanism diagram of aeolian sand concrete under salt-frost conditions

    图  12  风积沙混凝土试样初始孔隙含量分布

    Figure  12.  Initial pore size distribution ratio of the aeolian sand concrete samples

    表  1  试验用砂(沙)主要成分

    Table  1.   Main chemical composition of the used sand wt%

    Sand nameSiO2Al2O3CaOFe2O3MgOOthers
    River sand79.576.402.977.881.071.91
    Aeolian sand75.858.024.799.221.150.97
    下载: 导出CSV

    表  2  风积沙混凝土配合比及28天抗压强度

    Table  2.   Mixture ratio and 28 days compressive strength of aeolian sand concrete

    SampleWater/
    (kg·m−3)
    Cement/
    (kg·m−3)
    Fly ash/
    (kg·m−3)
    River sand/
    (kg·m−3)
    Aeolian sand/
    (kg·m−3)
    Aggregate/
    (kg·m−3)
    Air-entraining
    agent/(kg·m−3)
    28 d compressive strength/MPa
    RS-C19033884572.012150.02541.82
    30%AS-C19033884400.4171.612150.02544.58
    50%AS-C19033884286.0286.012150.02539.05
    100%AS-C19033884572.012150.02538.03
    Notes: C—Concrete; RS—River sand; AS—Aeolian sand; RS-C—Ordinary concrete; 30%AS-C, 50%AS-C and 100%AS-C—Aeolian sand concrete with the aeolian sand replacement rate of 30%, 50% and 100% by equal mass.
    下载: 导出CSV
  • [1] 赵燕茹, 刘芳芳, 王磊, 等. 基于孔结构的单面冻后混凝土抗压强度模型研究[J]. 建筑材料学报, 2020, 23(6):1328-1336, 1344. doi: 10.3969/j.issn.1007-9629.2020.06.010

    ZHAO Yanru, LIU Fangfang, WANG Lei, et al. Modeling of compressive strength of concrete based on pore structure under single-side freeze-thaw condition[J]. Journal of Building Materials,2020,23(6):1328-1336, 1344(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.06.010
    [2] 武海荣, 金伟良, 张锋剑, 等. 关注环境作用的混凝土冻融损伤特性研究进展[J]. 土木工程学报, 2018, 51(8):37-46.

    WU Hairong, JIN Weiliang, ZHANG Fengjian, et al. A state-of-the-art review on freeze-thaw damage characteristics of concrete under environmental actions[J]. China Civil Engineering Journal,2018,51(8):37-46(in Chinese).
    [3] 匡亚川, 陈煜杰, 冯金仁, 等. 寒冷地区高速铁路桥梁冻融损伤研究[J]. 中国铁道科学, 2019, 40(2):39-45. doi: 10.3969/j.issn.1001-4632.2019.02.06

    KUANG Yachuan, CHEN Yujie, FENG Jinren, et al. Freezing-thawing damage of high speed railway bridges in cold region[J]. China Railway Science,2019,40(2):39-45(in Chinese). doi: 10.3969/j.issn.1001-4632.2019.02.06
    [4] SHANG H S, SONG Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles[J]. Cement and Concrete Research,2006,36(10):1857-1864. doi: 10.1016/j.cemconres.2006.05.018
    [5] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1):1-14, 43. doi: 10.6052/j.issn.1000-4750.2018.08.ST11

    LUO Daming, NIU Ditao, SU Li. Research progress on durability of stressed concrete under environmental actions[J]. Engineering Mechanics,2019,36(1):1-14, 43(in Chinese). doi: 10.6052/j.issn.1000-4750.2018.08.ST11
    [6] SICAT E, GONG F Y, UEDA T, et al. Experimental investigation of the deformational behavior of the interfacial transition zone (ITZ) in concrete during freezing and thawing cycles[J]. Construction and Building Materials,2014,65:122-131. doi: 10.1016/j.conbuildmat.2014.04.035
    [7] LI S G, CHEN G X, JI G J, et al. Quantitative damage evaluation of concrete suffered freezing-thawing by DIP technique[J]. Construction and Building Materials,2014,69:177-185. doi: 10.1016/j.conbuildmat.2014.07.072
    [8] ZHOU S B, LIANG J L, XUAN W A. The correlation between pore structure and macro durability performance of road concrete under loading and freeze-thaw and drying wetting cycles[J]. Advances in Materials Science and Engineering,2017,2017:5015169. doi: 10.1155/2017/5015169
    [9] ZHANG M H, ZHU X Z, SHI J Y, et al. Utilization of desert sand in the production of sustainable cement-based materials: A critical review[J]. Construction and Building Materials,2022,327:127014. doi: 10.1016/j.conbuildmat.2022.127014
    [10] MARIA G, ELIPE M, LOPEZ-QUEROL S. Aeolian sands: Characterization, options of improvement and possible employment in construction—The state of the art[J]. Construction and Building Materials,2014,73:728-739. doi: 10.1016/j.conbuildmat.2014.10.008
    [11] 吴俊臣, 申向东. 风积沙混凝土的抗冻性与冻融损伤机理分析[J]. 农业工程学报, 2017, 33(10):184-190. doi: 10.11975/j.issn.1002-6819.2017.10.024

    WU Junchen, SHEN Xiangdong. Analysis on frost resistance and damage mechanism of aeolian sand concrete[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(10):184-190(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.10.024
    [12] 薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2):199-205. doi: 10.3969/j.issn.1007-9629.2019.02.006

    XUE Huijun, SHEN Xiangdong, ZOU Chunxia, et al. Freeze-thaw pore evolution of aeolian sand concrete based on nuclear magnetic resonance[J]. Journal of Building Materials,2019,22(2):199-205(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.02.006
    [13] 邹欲晓, 申向东, 李根峰, 等. MgSO4—冻融循环作用下风积沙混凝土的微观孔隙研究[J]. 建筑材料学报, 2018, 21(5):817-824. doi: 10.3969/j.issn.1007-9629.2018.05.019

    ZOU Yuxiao, SHEN Xiangdong, LI Genfeng, et al. Micropore of aeolian sand concrete under MgSO4—Freeze-thaw cycles[J]. Journal of Building Materials,2018,21(5):817-824(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.05.019
    [14] DONG W, SHEN X D, XUE H J, et al. Research on the freeze-thaw cycle test and damage model of aeolian sand lightweight aggregate concrete[J]. Construction and Building Materials,2016,123(1):792-799.
    [15] 刘海峰, 马映昌, 张润奇, 等. 冻融环境下沙漠砂对混凝土轴心受压力学性能的影响[J]. 哈尔滨工业大学学报, 2021, 53(3): 101-109, 117.

    LIU Haifeng, MA Yingchang, ZHANG Runqi, et al. Influence of desert sand on axial compression behavior of concrete under freezing and thawing environment[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 101-109, 117 (in Chinese).
    [16] LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze-thaw conditions[J]. Construction and Building Materials,2022,340:127433. doi: 10.1016/j.conbuildmat.2022.127433
    [17] 中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    China Academy of Building Research. Standard for test method of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [18] XIAO Q H, LI Q, CAO Z Y, et al. The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack[J]. Construction and Building Materials,2019,200:344-355. doi: 10.1016/j.conbuildmat.2018.12.066
    [19] HAO L, LIU Y, WANG W, et al. Effect of salty freeze-thaw cycles on durability of thermal insulation concrete with recycled aggregates[J]. Construction and Building Materials,2018,189:478-486. doi: 10.1016/j.conbuildmat.2018.09.033
    [20] 牛荻涛, 张桂涛, 罗大明, 等. 极端冻融环境混凝土抗冻性能研究[J]. 工业建筑, 2019, 49(6):1-6.

    NIU Ditao, ZHANG Guitao, LUO Daming, et al. Research on frost resistance of reinforced concrete in extreme freezing-thawing environment[J]. Industrial Construction,2019,49(6):1-6(in Chinese).
    [21] SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research,1996,26(5):717-727. doi: 10.1016/S0008-8846(96)85009-5
    [22] ZHAO G W, GUO M Z, CUI J F, et al. Partially-exposed cast-in-situ concrete degradation induced by internal-external sulfate and magnesium multiple coupled attack[J]. Construction and Building Materials,2021,294:123560. doi: 10.1016/j.conbuildmat.2021.123560
    [23] XIAO Q H, CAO Z Y, GUAN X, et al. Damage to recycled concrete with different aggregate substitution rates from the coupled action of freeze-thaw cycles and sulfate attack[J]. Construction and Building Materials,2019,221:74-83. doi: 10.1016/j.conbuildmat.2019.06.060
    [24] AL-HARTHY A S, HALIM M A, TAHA R, et al. The properties of concrete made with fine dune sand[J]. Construction and Building Materials,2007,21(8):1803-1808. doi: 10.1016/j.conbuildmat.2006.05.053
    [25] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3):262-270.

    WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society,1979,7(3):262-270(in Chinese).
    [26] 余红发, 孙伟, 金祖权, 等. 土木工程结构混凝土寿命预测的损伤演化方程[J]. 东南大学学报(自然科学版), 2006, 36(SII):216-220.

    YU Hongfa, SUN Wei, JIN Zuquan, et al. Damage evolution equation for service life prediction of concrete in key civil engineering[J]. Journal of Southeast University (Natural Science Edition),2006,36(SII):216-220(in Chinese).
    [27] 张广泰, 耿天娇, 鲁海波, 等. 冻融循环下沙漠砂纤维混凝土损伤模型研究[J]. 硅酸盐通报, 2021, 47(7):2226-2231.

    ZHANG Guangtai, GENG Tianjiao, LU Haibo, et al. Damage model of desert sand fiber reinforced concrete under freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society,2021,47(7):2226-2231(in Chinese).
    [28] JIANG Z, HE B, ZHU X, et al. State-of-the-art review on properties evolution and deterioration mechanism of concrete at cryogenic temperature[J]. Construction and Building Materials,2020,257:119456. doi: 10.1016/j.conbuildmat.2020.119456
    [29] VALENZA J J, SCHERER G W. Mechanism for salt scaling of a cementitious surface[J]. Materials and Structures,2007,40(3):259-268. doi: 10.1617/s11527-006-9104-1
    [30] LI Y G, ZHANG H M, LIU G X, et al. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete[J]. Construction and Building Materials,2020,247:118538. doi: 10.1016/j.conbuildmat.2020.118538
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  495
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-05-04
  • 录用日期:  2022-05-22
  • 网络出版日期:  2022-06-08
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回