核-壳型CeO2@UiO-66的设计合成及催化发光乙醚传感研究

Design and synthesis of core-shell CeO2@UiO-66 for cataluminescence-based diethyl ether sensing

  • 摘要: 本研究成功构建了一种基于CeO2@UiO-66核-壳纳米结构的新型催化发光传感器,用于乙醚的高选择性、高灵敏度检测。采用溶剂热法在CeO2纳米颗粒表面均匀生长UiO-66壳层,形成具有有序多孔结构的复合材料,显著提高了催化活性和对目标分子的选择性识别。系统研究表明,在优化条件下(波长490 nm、温度360 ℃、载气流速300 mL·min−1),该传感器对乙醚表现出优异的传感性能:检出限低至4.4×10−5 mol·L−1,在1~40 mmol·L−1浓度范围内催化发光强度与浓度线性关系良好(R2=0.9961),稳定性高(11次循环测试的RSD=1.0%,7天连续检测RSD低至3.51%)。在实际样品分析中,加标回收率介于95.4%–105.5%之间,表明该方法准确可靠,具备良好的实际应用价值。本研究为MOF基复合材料在催化发光传感中的应用提供了新途径,也为挥发性有机物的快速检测提供了有效解决方案。

     

    Abstract: This study successfully constructed a novel cataluminescence (CTL) sensor based on a core-shell nanostructure. By integrating CeO2 nanoparticle cores with UiO-66 metal-organic framework (MOF) shells, a high-performance CeO2@UiO-66 composite sensing material was fabricated for efficient diethyl ether detection. The composite was synthesized via a solvothermal method, which enabled uniform growth of UiO-66 shells on spherical CeO2 cores, resulting in a well-defined core-shell architecture with abundant porosity. This unique structure not only significantly enhanced catalytic activity but also improved the selective recognition capability toward target molecules. Experimental results demonstrated outstanding sensing performance for diethyl ether, including ultrahigh sensitivity (detection limit: 4.4×10−5 mol·L−1) and excellent selectivity (showing significantly stronger response than over ten common VOCs). Under optimized conditions (detection wavelength: 490 nm, operating temperature: 360℃, carrier gas flow rate: 300 mL·min−1), the CTL intensity exhibited a good linear relationship with diethyl ether concentration (1-40 mmol·L−1, R2=0.9961) along with remarkable reproducibility (1.0% RSD over 11 cycles; 3.51% RSD over 7 days of continuous operation). In practical sample analysis, the spike recovery rates ranged between 95.4%-105.5%, confirming the method's accuracy and practicality. This work not only provides new insights into the application of MOF-based composites in CTL sensing, but also offers an innovative solution for rapid and precise detection of volatile organic compounds.

     

/

返回文章
返回