留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干湿循环条件下生物聚合物改良砂土强度特性

宋泽卓 郝社锋 梅红 刘瑾 任静华 卜凡 王梓

宋泽卓, 郝社锋, 梅红, 等. 干湿循环条件下生物聚合物改良砂土强度特性[J]. 复合材料学报, 2023, 40(4): 2285-2295. doi: 10.13801/j.cnki.fhclxb.20220623.006
引用本文: 宋泽卓, 郝社锋, 梅红, 等. 干湿循环条件下生物聚合物改良砂土强度特性[J]. 复合材料学报, 2023, 40(4): 2285-2295. doi: 10.13801/j.cnki.fhclxb.20220623.006
SONG Zezhuo, HAO Shefeng, MEI Hong, et al. Strength characteristics of biopolymer modified sand under dry-wet cycle[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2285-2295. doi: 10.13801/j.cnki.fhclxb.20220623.006
Citation: SONG Zezhuo, HAO Shefeng, MEI Hong, et al. Strength characteristics of biopolymer modified sand under dry-wet cycle[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2285-2295. doi: 10.13801/j.cnki.fhclxb.20220623.006

干湿循环条件下生物聚合物改良砂土强度特性

doi: 10.13801/j.cnki.fhclxb.20220623.006
基金项目: 自然资源部国土(耕地)生态监测与修复工程技术创新中心开放课题(GTST2021-006);国家自然科学基金项目(41877212);中央高校基本科研业务费项目(B210203037)
详细信息
    通讯作者:

    刘瑾,博士,教授,博士生导师,研究方向为环境地质工程、地质灾害监测 E-mail: jinliu920@163.com

  • 中图分类号: TU13

Strength characteristics of biopolymer modified sand under dry-wet cycle

Funds: Open Project of Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources (GTST2021-006); National Natural Science Foundation of China (41877212); Fundamental Research Funds for the Central Universities (B210203037)
  • 摘要: 通过无侧限抗压强度试验和三轴剪切试验对生物聚合物(XG)/砂土复合材料强度特性进行研究,分析不同XG含量(与砂土质量比)和不同干湿循环次数对XG/砂土的强度特性的影响,并利用扫描电子显微镜和低场核磁共振分析仪对不同XG/砂土的微观结构进行分析与研究。研究结果表明:随着XG含量的增加,XG/砂土的无侧限抗压强度、峰值偏应力和黏聚力均发生增强,内摩擦角在27°~32°范围内变化。随着干湿循环的次数的增加,XG/砂土的无侧限抗压强度、峰值偏应力和黏聚力均发生一定的减小。当经历4次干湿循环时,XG/砂土的强度降幅为28.57%。随着干湿循环次数的继续增加,强度的降幅趋于平缓。生物聚合物可以在砂土表面和孔隙中形成大量的网状结构,大量的网状结构相互连接为网状膜将砂土连接为一个整体。环境中水分的变化会使得网状膜产生一定的损伤,使得XG/砂土的力学性质降低。但相较于未经改良的砂土,XG/砂土仍然拥有较强的结构性能和力学性能。

     

  • 图  1  试验用砂土粒径分布曲线

    Figure  1.  Particle size distribution curve of sand for test

    图  2  试样与试验仪器

    Figure  2.  Sample and test instruments

    图  3  不同生物聚合物(XG)含量XG/砂土试样典型应力-应变曲线

    Figure  3.  Typical stress-strain curves of XG/sand samples with different biopolymer (XG) contents

    图  4  干湿循环次数对不同XG含量XG/砂土试样抗压强度的影响

    Figure  4.  Effect of dry-wet cycles on compressive strength of XG/sand samples with different XG contents

    图  5  100 kPa围压不同XG含量XG/砂土试样偏应力-应变曲线

    Figure  5.  Partial stress-strain curves of XG/sand samples with different XG contents under 100 kPa confining pressure

    图  6  XG/砂土峰值偏应力随干湿循环次数的变化曲线

    Figure  6.  Variation curves of peak partial stress of XG/sand with different dry-wet cycles

    图  7  XG/砂土黏聚力(a)和内摩擦角(b)随干湿循环次数的变化曲线

    Figure  7.  Variation curves of cohesion (a) and internal friction angle (b) of XG/sand with different dry-wet cycles

    图  8  干湿循环20次后XG/砂土SEM图像

    Figure  8.  SEM images of XG/sand after 20 dry-wet cycles

    图  9  改良前后砂土的能谱测试结果

    Figure  9.  Energy spectra test results of sand before and after modification

    图  10  不同干湿循环次数下XG含量2%的XG/砂土试样的孔径分布曲线

    Figure  10.  Pore size distribution curves of XG/sand samples with 2%XG content and different dry-wet cycles

    图  11  不同干湿循环次数下XG含量2%的XG/砂土试样孔隙度

    Figure  11.  Porosity of XG/sand samples with 2%XG content and different dry-wet cycles

  • [1] 宋洋, 刘思源, 王晨炟. 含水率和干湿循环对原状黄土变形特性的影响[J]. 辽宁工程技术大学学报(自然科学版), 2021, 40(2):148-155.

    SONG Yang, LIU Siyuan, WANG Chenda. Analysis on influence of moisture content and drying and watering cycle on deformation characteristics of undisturbed loess[J]. Journal of Liaoning Technical University (Natural Science),2021,40(2):148-155(in Chinese).
    [2] GOH S, RAHARDJO H, LEONG E. Shear strength of unsaturated soils under multiple drying-wetting cycles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(2): 6013001.
    [3] 李卓智, 张静波, 杨明. 江汉平原砂土回弹模量干湿循环折减系数研究[J]. 公路, 2020, 65(11):44-52.

    LI Zhuozhi, ZHANG Jingbo, YANG Ming. Study on dry-wet cycle reduction coefficient of sandy soil resilience modulus in Jianghan plain[J]. Highway,2020,65(11):44-52(in Chinese).
    [4] 刘俊东, 唐朝生, 曾浩, 等. 干湿循环条件下黏性土干缩裂隙演化特征[J]. 岩土力学, 2021, 42(10):2763-2772.

    LIU Jundong, TANG Chaosheng, ZENG Hao, et al. Evolution of desiccation cracking behavior of clays under drying-wetting cycles[J]. Rock and Soil Mechanics,2021,42(10):2763-2772(in Chinese).
    [5] 陈勇, 崔宪东, 赵强, 等. 干湿循环对边坡动力稳定性的影响及模拟[J]. 武汉大学学报(工学版), 2021, 54(9):795-800.

    CHEN Yong, CUI Xiandong, ZHAO Qiang, et al. Effect of cyclic drying-wetting on seismic stability of slope and its simulation[J]. Engineering Journal of Wuhan University,2021,54(9):795-800(in Chinese).
    [6] 张鸿秋. 基于木质素磺酸钙改良膨胀土的干湿循环特性研究[D]. 郑州: 华北水利水电大学, 2021.

    ZHANG Hongqiu. Study on the dry-wet cycle characteristics of weak expansive soil based on Calcium Lignosulphonate[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021(in Chinese).
    [7] 郭义. 香溪河岸坡粉砂岩干湿循环损伤机理试验研究[D]. 武汉: 中国地质大学, 2013.

    GUO Yi. Research on the damage mechanism of siltstone from Xiangxi river bank in drying and wetting cycle[D]. Wuhan: China University of Geosciences, 2013(in Chinese).
    [8] 刘昭希. 干湿交替对荆江河岸土体力学特性及稳定性的影响研究[D]. 石河子: 石河子大学, 2020.

    LIU Zhaoxi. Influence of dry-wet alternation condition on mechanical properties and stability of riverbank soil in Jingjiang reach[D]. Shihezi: Shihezi University, 2020(in Chinese).
    [9] UDOMCHAI A, HOY M, HORPIBULSUK S, et al. Failure of riverbank protection structure and remedial approach: A case study in Suraburi province, Thailand[J]. Engineering Failure Analysis,2018,91:243-254. doi: 10.1016/j.engfailanal.2018.04.040
    [10] 侯晓斌. 水利工程建设中的浆砌石护坡施工技术探讨[J]. 人民黄河, 2020, 42(S2):163-164.

    HOU Xiaobin. Discussion on construction technology of mortar masonry slope protection in water conservancy project construction[J]. Yellow River,2020,42(S2):163-164(in Chinese).
    [11] 钟汉林. 随机分布纤维加固饱和砂土力学性能研究[D]. 烟台: 烟台大学, 2020.

    ZHONG Hanlin. Mechanical properties of saturated sand reinforced by randomly distributed fibers[D]. Yantai: Yantai University, 2020(in Chinese).
    [12] XIE W, GUO Q, CHOU N, et al. Shear strength behavior of sand reinforced by kraft paper using the ring shear apparatus[J]. Advances in Civil Engineering,2021,2021:8819015. doi: 10.1155/2021/8819015
    [13] CHEN Q, YU R, TAO G, et al. Shear behavior of polyurethane foam adhesive improved calcareous sand under large-scale triaxial test[J]. Marine Georesources & Geotechnology,2021,39(12):1449-1458.
    [14] 王颖, 刘瑾, 白玉霞, 等. 高分子固化剂-玄武岩纤维/砂土复合材料强度特性[J]. 复合材料学报, 2019, 36(10):2407-2417.

    WANG Ying, LIU Jin, BAI Yuxia, et al. Strength characteristics of polymer curing agent-basalt fiber/sand composites[J]. Acta Materiae Compositae Sinica,2019,36(10):2407-2417(in Chinese).
    [15] 谭毓清, 邵天彦, 王秀, 等. 砂改良土干湿循环下胀缩性研究[J]. 低温建筑技术, 2017, 39(5):111-112.

    TAN Yuqing, SHAO Tianyan, WANG Xiu, et al. Study on swelling shrinkage of sand improved soil under drying-wetting cycle[J]. Low Temperature Architecture Technology,2017,39(5):111-112(in Chinese).
    [16] WU L, MIAO L, SUN X, et al. Enzyme-induced carbonate precipitation combined with polyvinyl alcohol to solidify aeolian sand[J]. Journal of Materials in Civil Engineering,2021,33(12):04021373. doi: 10.1061/(ASCE)MT.1943-5533.0004009
    [17] LI Z, ZHAO Z, SHI H, et al. Experimental investigation of mechanical, permeability, and microstructural properties of PVA-improved sand under dry-wet cycling conditions[J]. Frontiers in Physics,2021,9:761754. doi: 10.3389/fphy.2021.761754
    [18] 王天, 翁兴中, 张俊, 等. 干湿循环条件下复合固化砂土抗压强度试验研究[J]. 铁道科学与工程学报, 2017, 14(4):721-729.

    WANG Tian, WENG Xingzhong, ZHANG Jun, et al. Strength characteristics of fiber-reinforced solidified sand under dry-wet cycles[J]. Journal of Railway Science and Engineering,2017,14(4):721-729(in Chinese).
    [19] WANG X, ZHAN H, WANG J, et al. On the mechanical damage to tailings sands subjected to dry-wet cycles[J]. Bulletin of Engineering Geology & the Environment,2019,78(6):4647-4657.
    [20] 倪静, 王子腾, 耿雪玉. 植物-生物聚合物联合法固土的试验研究[J]. 岩土工程学报, 2020, 42(11):2131-2137.

    NI Jing, WANG Ziteng, GENG Xueyu. Experimental study on combined plant-biopolymer method for soil stabilization[J]. Chinese Journal of Geotechnical Engineering,2020,42(11):2131-2137(in Chinese).
    [21] CHANG I, IM J, CHO G. Introduction of microbial biopolymers in soil treatment for future environmentally friendly and sustainable geotechnical engineering[J]. Sustainability,2016,8(3):251. doi: 10.3390/su8030251
    [22] 中国国家标准化管理委员会. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Standards Press, 2019(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  431
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-06-08
  • 录用日期:  2022-06-13
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回