N,S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能

Electromagnetic shielding effectiveness and mechanical properties of N,S co-doped carbon/PVDF nanocomposite films

  • 摘要: 日益严重的电磁辐射迫切需要高性能的电磁干扰屏蔽材料。杂原子掺杂的碳材料能够通过电荷密度的重新分布感应产生电偶极子,改善极化损耗和传导损耗,增强电磁屏蔽效能(EMI SE)。以亚甲蓝(MB)为氮、硫及碳源,多壁碳纳米管(MWCNTs)为导电骨架及加热层,通过微波炭化制备了N, S共掺杂碳,并与聚偏氟乙烯(PVDF)复合制备了PVDF纳米复合膜。考察了MWCNTs与MB的质量比、复合膜厚度及N, S共掺杂碳填充量对屏蔽性能的影响,由于纳米复合膜具有较好的阻抗匹配性及极化损耗和传导损耗共同作用的电磁干扰屏蔽机制,当MWCNTs和MB的质量比为1∶1时制备的复合膜(厚度为0.9 mm,填充量为20 wt.%)在X波段(8.2-12.4 GHz)具有43.21 dB-45.20 dB的屏蔽性能。此时,通过纳米压痕系统在应变率0.05 s−1下测得复合膜的硬度和弹性模量分别为0.25 GPa和3.60 GPa。

     

    Abstract: High performance EMI shielding materials are urgently needed for the increasing electromagnetic radiation. Heteroatom-doped carbon materials are capable of inducing the generation of electric dipoles through the redistribution of charge density, improving polarisation loss and conduction loss, and enhancing electromagnetic shielding effectiveness (EMI SE). N, S co-doped carbon was prepared by microwave carbonization using methylene blue (MB) as nitrogen, sulphur and carbon source, and multi-walled carbon nanotubes (MWCNTs) as conductive backbone and heating layer, and PVDF nanocomposite film was prepared by composite with polyvinylidene fluoride (PVDF). The effects of the mass ratio of MWCNTs to MB, the thickness of the composite film and the filling amount of N, S co-doped carbon on the shielding performance were investigated. Due to the nanocomposite film's good impedance matching and the electromagnetic interference shielding mechanism of polarisation and conduction losses, the composite film prepared when the mass ratio of MWCNTs to MB is 1∶1 (thickness of 0.9 mm, filling amount of 20 wt.%) had a shielding performance of 43.21 dB-45.20 dB in the X-band (8.2-12.4 GHz).At this point, the hardness and modulus of elasticity of the composite film were measured to be 0.25 GPa and 3.60 GPa, respectively, by a nanoindentation system at a strain rate of 0.05 s−1.

     

/

返回文章
返回