Comparative study on the hygrothermal durability of different fiber reinforced composites
-
摘要: 为研究碳纤维、玻璃纤维和植物纤维增强复合材料在湿热环境下的耐久性能差异,本文制备了纤维体积分数为60vol%的单向碳纤维/环氧树脂复合材料(Carbon fiber reinforced polymer,CFRP)、玻璃纤维/环氧树脂复合材料(Glass fiber reinforced polymer,GFRP)和亚麻纤维/环氧树脂复合材料(Flax fiber reinforced polymer,FFRP),在23℃、37.8℃和60℃下进行了吸水试验,并测试了三种复合材料在厚度方向的膨胀率、拉伸性能和层间剪切性能,同时利用时温等效原理对它们的长期吸水性能及力学性能进行了预测。结果表明,三种复合材料的吸水行为在老化前期均符合Fickian扩散定律,而后期有所偏离。从吸水性能来看,FFRP具有最高的扩散系数、饱和吸水率和膨胀率。从力学性能来看,CFRP的拉伸性能随老化时间的增加几乎不变,而层间剪切强度小幅下降,烘干后其拉伸性能及层间剪切性能与未老化时相同, CFRP在老化过程中未发生不可逆变化。GFRP老化后的拉伸强度和层间剪切强度下降幅度较大,而拉伸模量下降幅度较小,烘干后拉伸性能得到部分恢复,而层间剪切强度则基本未有任何恢复,GFRP在老化过程中发生了玻璃纤维水解及界面脱粘等不可逆变化。由于吸水后亚麻纤维的塑化,FFRP的拉伸强度略微提高,而拉伸模量和层间剪切强度则急剧下降后保持稳定,烘干后,其拉伸强度反而大幅下降,拉伸模量及层间剪切强度则大幅上升,这与水分的塑化作用、纤维及基体的膨胀和降解等变化有关。由三种复合材料的长期性能预测结果可知,CFRP的长期力学性能保持率较好,GFRP的长期力学性能保持率较差,FFRP在拉伸强度保持率方面具有优势,研究结果为湿热环境下工程结构的选材和设计提供了一定的理论依据。Abstract: Unidirectional carbon fiber reinforced epoxy resin composites (CFRP), glass fiber reinforced epoxy resin composites (GFRP) and flax fiber reinforced epoxy resin composites (FFRP) were manufactured with fiber volume fraction of 60vol% to compare the hygrothermal durability of composites. Water absorption tests were conducted at 23℃, 37.8℃ and 60℃. The swelling rate in the thickness direction, tensile properties and interlaminar shear properties were also monitored, and the time-temperature superposition principle was used to predict the water absorption and mechanical properties. The results show that the water absorption behaviors of three kinds of compo-sites conformed to Fickian's law in the early stage and gradually deviated in the later stage. In terms of water absorption performance, FFRP has the highest diffusion coefficient, saturation water absorption rate and swelling rate. In terms of mechanical properties, the tensile properties of CFRP are almost unchanged with the increase of aging time, while the interlaminar shear strength decreases slightly, and the tensile properties and interlaminar shear properties after drying are the same as those without aging, which indicate that no irreversible changes occurred in CFRP. The tensile strength and interlaminar shear strength of GFRP decrease a lot after aging, while the tensile modulus decrease less. The tensile properties are partially restored after drying, while the interlaminar shear strength is barely restored, which indicate that irreversible changes such as hydrolysis of glass fibers and interfacial debonding occurred during the aging process. Due to the plasticization of flax fibers after aging, the tensile strength of FFRP increase slightly while the tensile modulus and interlaminar shear strength decrease sharply and then remaine stable. After drying, the tensile strength decrease significantly, while the tensile modulus and interlaminar shear strength increase significantly, which are related to the changes of plasticization, expansion and degradation of fiber and matrix. From the long-term performance of the three kinds of composites, it can be seen that the long-term mechanical properties retention rates of CFRP are good, while that of GFRP are poor, and FFRP has an advantage in tensile strength retention rate. The results can provide a theoretical basis for the selection and design of engineering materials under hygrothermal environment.
-
Key words:
- flax fiber /
- carbon fiber /
- glass fiber /
- hygrothermal aging /
- water absorption /
- mechanical properties /
- long-term prediction
-
表 1 碳纤维/环氧树脂复合材料(CFRP)、玻璃纤维/环氧树脂复合材料(GFRP)和亚麻纤维/环氧树脂复合材料(FFRP)试样铺层方案
Table 1. Stacking sequence of the carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) and flax fiber reinforced polymer (FFRP)
Composite specimen code Thickness/mm 2 5 CFRP [11 C] [27 C] GFRP [14 G] [36 G] FFRP [9 F] [21 F] Notes: C—CFRP ply; G—GFRP ply; F—FFRP ply. 表 2 复合材料吸水性能参数
Table 2. Summary of water absorption parameters
Composite specimen code T/℃ n k/h−n $ {M_{\text{m}}} $/% $ {k'} $ D/(10−3 mm2·h−1) CFRP 23 0.438 0.029 0.649 0.013 0.301 37.8 0.436 0.042 0.678 0.019 0.643 60 0.454 0.054 0.782 0.033 1.365 GFRP 23 0.470 0.028 0.684 0.017 0.508 37.8 0.439 0.041 0.739 0.022 0.665 60 0.433 0.066 0.801 0.036 1.622 FFRP 23 0.462 0.090 12.065 0.956 4.933 37.8 0.468 0.122 12.453 1.284 8.343 60 0.462 0.169 12.704 1.751 14.922 Notes: T—Aging temperature; n—Parameter describing the swelling mechanism; k—Diffusion constant; Mm—Maximum moisture uptake at equilibrium state; k’—Slope of linear portion of the sorption curves; D—Diffusion coefficient of the composites. 表 3 三种复合材料未老化及老化50天后的拉伸性能
Table 3. Tensile properties of three kinds of composites unaged and aged for 50 days
Composite specimen code Tensile strength/MPa Tensile modulus/GPa 0 day 50 days 0 day 50 days CFRP 1173.33±120.55 1177.23±86.84 111.57±1.21 113.04±3.25 GFRP 814.15±23.30 633.40±20.03 39.49±2.40 37.62±1.03 FFRP 320.67±27.30 326.57±1.13 23.59±1.61 7.61±0.51 表 4 三种复合材料未老化及老化120天后的层间剪切强度
Table 4. Interlaminar shear strength of three kinds of composites unaged and aged for 120 days
Composite
specimen codeShear strength/MPa 0 day 120 days CFRP 45.16±1.79 39.92±1.22 GFRP 34.01±1.05 21.71±0.05 FFRP 28.76±0.79 13.41±0.23 表 5 三种复合材料的平移因子
${\alpha _T}$ 和垂直位移因子${b_T}$ Table 5. Summary of shift factors
${\alpha _T}$ and vertical displacement factor${b_T}$ for three kinds of compositesComposite specimen code Temperature T/℃ ${b_T}$ ${\alpha _T}$ CFRP 23 1 1 37.8 1.04403 0.43013 60 1.20439 0.20793 GFRP 23 1 1 37.8 1.08002 0.64726 60 1.51327 0.21933 FFRP 23 1 1 37.8 1.03216 0.55304 60 1.05296 0.27226 -
[1] RAVISHANKAR B, NAYAK S K, KADER M A. Hybrid composites for automotive applications—A review[J]. Journal of Reinforced Plastics and Composites,2019,38(18):835-845. doi: 10.1177/0731684419849708 [2] YANG X D, AN T, ZOU T C, et al. Effect of hygrothermal environment on mechanical properties and damage mecha-nism of CFRP[J]. Journal of Materials Engineering,2019,47(7):84-91. [3] ABANILLA M A, LI Y, KARBHARI V M. Durability characterization of wet layup graphite/epoxy composites used in external strengthening[J]. Composites Part B: Engineering,2006,37(2-3):200-212. [4] LI D, LIN H, CUI D, et al. Weatherability and hygrothermal ageing properties of CFRP plates[J]. Journal of Materials Science and Engineering,2018,36(4):535-540. [5] FENG Z Y, MOU H L, XIE J, et al. Hygrothermal environment effects on mechanical properties of T700/3228 CFRP laminates[J]. Materials Testing,2019,61(9):857-863. doi: 10.3139/120.111397 [6] 冯青, 李敏, 顾轶卓, 等. 不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究[J]. 复合材料学报, 2010, 27(6):16-20. doi: 10.13801/j.cnki.fhclxb.2010.06.030FENG Qing, LI Min, GU Yizhuo, et al. Experimental research on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica,2010,27(6):16-20(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.06.030 [7] 高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6):1147-1152. doi: 10.13801/j.cnki.fhclxb.20160108.001GAO Kun, SHI Hanqiao, SUN Baogang, et al. Effects of hydro-thermal aging on properties of glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1147-1152(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160108.001 [8] ZHONG Y, CHEN M, ZHANG X, et al. Hygrothermal durability of glass and carbon fiber reinforced composites-A comparative study[J]. Composite Structures,2019,211:134-143. doi: 10.1016/j.compstruct.2018.12.034 [9] YANG S L, LIU W Q, FANG Y, et al. Influence of hygrother-mal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites[J]. Journal of Materials Science,2019,54(3):2102-2121. doi: 10.1007/s10853-018-2944-6 [10] GRAMMATIKOS S A, EVERNDEN M, MITCHELS J, et al. On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector[J]. Materials & Design,2016,96:283-295. [11] CHEOUR K, ASSARAR M, SCIDA D, et al. Effect of water ageing on the mechanical and damping properties of flax-fibre reinforced composite materials[J]. Composite Structures,2016,152:259-266. doi: 10.1016/j.compstruct.2016.05.045 [12] 贾云龙, BODO F. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2):608-616.JIA Yunlong, BODO F. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica,2022,39(2):608-616(in Chinese). [13] LI Y, XUE B. Hydrothermal ageing mechanisms of unidirectional flax fabric reinforced epoxy composites[J]. Polymer Degradation and Stability,2016,126:144-158. doi: 10.1016/j.polymdegradstab.2016.02.004 [14] MUNOZ E, GARCIA-MANRIQUE J A. Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites[J]. International Journal of Polymer Science,2015,2015:390275. [15] CHA J, YOON S. Determination of shift factor for long-term life prediction of carbon/fiber epoxy composites using the time-temperature superposition principle[J]. Functional Composites and Structures,2022,4(1):015003. doi: 10.1088/2631-6331/ac529e [16] LU J, XIAO Y. Improved approach to modelling preload relaxation in bolted composite joints[J]. Engineering Mechanics,2018,35(10):229-237. [17] PENG H, ZHAN T, JIANG J, et al. Comparison of the time-moisture and time-temperature equivalences in the creep properties of Chinese fir[J]. Wood Material Science & Engineering, (2021-09-29). [2022-06-24]. https://www.webofscience.com/wos/alldb/full-record/WOS:000697416800001. [18] NAKADA M, MIYANO Y. Formulation of time- and temperature-dependent strength of unidirectional carbon fiber reinforced plastics[J]. Journal of Composite Materials,2013,47(15):1897-1906. doi: 10.1177/0021998312452025 [19] KOYANAGI J, NAKADA M, MIYANO Y. Tensile strength at elevated temperature and its applicability as an accelerated testing methodology for unidirectional composites[J]. Mechanics of Time-Dependent Materials,2012,16(1):19-30. doi: 10.1007/s11043-011-9160-y [20] MACHADO M, CAKMAK U D, KALLAI I, et al. Thermomechanical viscoelastic analysis of woven-reinforced thermoplastic-matrix composites[J]. Composite Structures,2016,157:256-264. doi: 10.1016/j.compstruct.2016.08.041 [21] SUN B, LI Y. The study on hygrothermal aging behavior of composites and the prediction model of durability[J]. Fiber Reinforced Plastics/Composites,2013,4:28-34. [22] 李承高, 郭瑞, 王俊琦, 等. CFRP@GFRP混杂复合材料杆体在水浸泡环境下的性能演化[J]. 复合材料学报, 2021, 38(10):3290-3301. doi: 10.13801/j.cnki.fhclxb.20201215.008LI Chenggao, GUO Rui, WANG Junqi, et al. Property evolution of CFRP@GFRP hybrid composite rod exposed in the distilled water[J]. Acta Materiae Compositae Sinica,2021,38(10):3290-3301(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201215.008 [23] American Society of Testing Materials. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229[S]. West Conshohocken: ASTM, 2020. [24] American Society of Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM, 2017. [25] American Society of Testing Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344[S]. West Conshohocken: ASTM, 2016. [26] JOSEPH P V, RABELLO M S, MATTOSO L H C, et al. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites[J]. Composites Science and Technology,2002,62(10-11):1357-1372. doi: 10.1016/S0266-3538(02)00080-5 [27] SCIDA D, ASSARAR M, POILANE C, et al. Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite[J]. Composites Part B: Engi-neering,2013,48:51-58. doi: 10.1016/j.compositesb.2012.12.010 [28] SHEN C H, SPRINGER G S. Moisture absorption and desorption of composite materials[J]. Journal of Composite Materials,1976,10:2-20. doi: 10.1177/002199837601000101 [29] 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2010: 364-368.HE Fu. Carbon fibre and graphite fibre[M]. Beijing: Chemical industry press, 2010: 364-368(in Chinese). [30] BROWN E N, DAVIS A K, JONNALAGADDA K D, et al. Effect of surface treatment on the hydrolytic stability of E-glass fiber bundle tensile strength[J]. Composites Science and Technology,2005,65(1):129-136. doi: 10.1016/j.compscitech.2004.07.001 [31] FEIH S, MOURITZ A P, CASE S W. Determining the mechanism controlling glass fibre strength loss during thermal recycling of waste composites[J]. Composites Part A: Applied Science and Manufacturing,2015,76:255-261. doi: 10.1016/j.compositesa.2015.06.006 [32] MITTAL V, SAINI R, SINHA S. Natural fiber-mediated epoxy composites-A review[J]. Composites Part B: Engi-neering,2016,99:425-435. doi: 10.1016/j.compositesb.2016.06.051 [33] CHILALI A, ASSARAR M, ZOUARI W, et al. Analysis of the hydro-mechanical behaviour of flax fibre-reinforced composites: Assessment of hygroscopic expansion and its impact on internal stress[J]. Composite Structures,2018,206:177-184. doi: 10.1016/j.compstruct.2018.08.037 [34] LE DUIGOU A, DAVIES P, BALEY C. Exploring durability of interfaces in flax fibre/epoxy micro-composites[J]. Composites Part A: Applied Science and Manufacturing,2013,48:121-128. doi: 10.1016/j.compositesa.2013.01.010 [35] SHI S Q, GARDNER D J. Effect of density and polymer content on the hygroscopic thickness swelling rate of compression molded wood fiber/polymer composites[J]. Wood and Fiber Science,2006,38(3):520-526. [36] BOURMAUD A, MORVAN C, BOUALI A, et al. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers[J]. Industrial Crops and Products,2013,44:343-351. doi: 10.1016/j.indcrop.2012.11.031 [37] 过梅丽. 高分子物理[M]. 北京: 北京航空航天大学出版社, 2005: 206-209.GUO Meili. Polymer physics[M]. Beijing: Beihang University Press, 2005: 206-209(in Chinese).