留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多功能CeO2/纤维素纳米纤维复合超疏水涂层的制备与性能

樊鑫炎 黄俊雅 杨炎晓 宋丽丽 王永贵 肖泽芳 王海刚 谢延军

樊鑫炎, 黄俊雅, 杨炎晓, 等. 多功能CeO2/纤维素纳米纤维复合超疏水涂层的制备与性能[J]. 复合材料学报, 2023, 40(5): 3002-3017. doi: 10.13801/j.cnki.fhclxb.20220622.002
引用本文: 樊鑫炎, 黄俊雅, 杨炎晓, 等. 多功能CeO2/纤维素纳米纤维复合超疏水涂层的制备与性能[J]. 复合材料学报, 2023, 40(5): 3002-3017. doi: 10.13801/j.cnki.fhclxb.20220622.002
FAN Xinyan, HUANG Junya, YANG Yanxiao, et al. Fabrication and properties of multifunctional CeO2/cellulose nanofibers composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3002-3017. doi: 10.13801/j.cnki.fhclxb.20220622.002
Citation: FAN Xinyan, HUANG Junya, YANG Yanxiao, et al. Fabrication and properties of multifunctional CeO2/cellulose nanofibers composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3002-3017. doi: 10.13801/j.cnki.fhclxb.20220622.002

多功能CeO2/纤维素纳米纤维复合超疏水涂层的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220622.002
基金项目: 国家自然科学基金(31901247)
详细信息
    通讯作者:

    王永贵,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail: wangyg@nefu.edu.cn

  • 中图分类号: TB332

Fabrication and properties of multifunctional CeO2/cellulose nanofibers composite superhydrophobic coating

Funds: National Natural Science Foundation of China (31901247)
  • 摘要: 自然界超疏水现象因独特的润湿性能被广泛关注,超疏水涂层的制备与应用尤为迫切。采用硝酸铈六水合物(Ce(NO3)3·6H2O)共沉淀法于纤维素纳米纤维(CNFs)表面合成二氧化铈(CeO2),通过十八烷基三甲基硅氧烷(OTMS)对其进行疏水改性,喷涂构筑得到超疏水涂层。探讨了CNFs、Ce(NO3)3·6H2O和OTMS不同质量比对超疏水涂层形貌和疏水性能的影响。结果表明:CNFs和Ce(NO3)3·6H2O质量比为1∶5和1∶7涂层具有实现超疏水特性的微/纳结构,其中CNFs、Ce(NO3)3·6H2O和OTMS质量比为1∶5∶10涂层接触角为(159.7±1.1)°,滚动角为(5.7±1.8)°,经过150°C高温处理3 h和UV照射36 h后接触角仍大于150°,同时具有良好的pH稳定性和一定的力学强度。涂层应用于玻璃、纸、木材和海绵等基体均可构筑超疏水表面并赋予其优异的自清洁性能,其中超疏水玻璃涂层对UV-A和UV-B紫外透过率分别为12.6%和0.1%,超疏水海绵吸油效率达94%左右。该超疏水涂层有望被用作保护材料并且拓展了稀土金属氧化物在纤维素基超疏水涂层领域的应用。

     

  • 图  1  O-CeO2/CNFs超疏水涂层的制备示意图

    TEMPO—2, 2, 6, 6-tetramethylpiperidine-1-oxy; OTMS—Octadecyl trimethoxysilane

    Figure  1.  Schematic diagram of the preparation of O-CeO2/CNFs superhydrophobic coating

    图  2  (a) 纤维素的SEM图像;(b) CNFs的TEM图像;CeO2/CNFs-5 ((c)~(f)) 和10-O-CeO2/CNFs-5 ((g)~(i)) 不同分辨率TEM图像

    Figure  2.  (a) SEM image of cellulose; (b) TEM image of CNFs; TEM images of CeO2/CNFs-5 ((c)-(f)) and 10-O-CeO2/CNFs-5 ((g)-(i))with different resolutions

    图  3  各样品的XRD图谱

    Figure  3.  XRD patterns of samples

    图  4  各样品的FTIR图谱

    Figure  4.  FTIR spectra of samples

    图  5  (a) 各样品的XPS图谱;(b) CeO2/CNFs-5和10-O-CeO2/CNFs-5的Si2p高分辨图谱;(c) C1s图谱;(d) O1s图谱

    Figure  5.  (a) XPS survey spectra of samples; (b) High-resolution spectra of Si2p of CeO2/CNFs-5 and 10-O-CeO2/CNFs-5; (c) High-resolution spectra of C1s; (d) High-resolution spectra of O1s

    图  6  ((a)~(d)) CeO2/CNFs-X-Glass (X=1、3、5和7)的SEM图像;((e)~(h)) 10-O-CeO2/CNFs-X-Glass (X=1、3、5和7)的SEM图像;((i)~(l)) CNFs-Glass、CeO2-Glass、O-B-CeO2/CNFs-Glass和O-CeO2-Glass的SEM图像

    Figure  6.  ((a)-(d)) SEM images of O-CeO2/CNFs-X-Glass (X=1, 3, 5 and 7); ((e)-(h)) SEM images of 10-O-CeO2/CNFs-X-Glass (X=1, 3, 5 and 7); ((i)-(l)) SEM images of CNFs-Glass, CeO2-Glass, O-B-CeO2/CNFs-Glass and O-CeO2-Glass

    图  7  Y-O-CeO2/CNFs-1-Glass (a)、Y-O-CeO2/CNFs-3-Glass (b)、 Y-O-CeO2/CNFs-5-Glass (c)和 Y-O-CeO2/CNFs-7-Glass (d) (Y=0、5、10和15)的接触角和滚动角

    Figure  7.  Static contact angle and sliding angle of Y-O-CeO2/CNFs-1-Glass (a), Y-O-CeO2/CNFs-3-Glass (b), Y-O-CeO2/CNFs-5-Glass (c), andY-O-CeO2/CNFs-7-Glass (d) (Y=0, 5, 10, and 15)

    图  8  10-O-CeO2/CNFs-5-Glass在不同温度(a)、UV辐照(b)和不同pH值(c)处理一定时间后接触角变化;((d)~(i)) 在UV处理36 h和不同pH下处理10 h滴有亚甲基蓝的涂层照片

    Figure  8.  Change of static contact angle under different temperatures (a), UV illumination (b) and different pH treatment (c) of 10-O-CeO2/CNFs-5-Glass for a certain time; ((d)-(i)) Photographs of the coating with methylene blue droplets after treated with UV for 36 h and different pH for 10 h

    图  9  10-O-CeO2/CNFs-5-Glass在不同磨损次数下接触角(a)及磨损10次前((b), (c))和后((d), (e))的SEM图像

    Figure  9.  Static contact angle (a) of 10-O-CeO2/CNFs-5-Glass under different abrasion cycles and SEM images of coating before ((b), (c))and after ((d), (e)) 10 abrasion cycles

    图  10  球形亚甲基蓝液滴在10-O-CeO2/CNFs-5-Glass (a)、10-O-CeO2/CNFs-5-Paper (b)、10-O-CeO2/CNFs-5-Wood (c) 和水滴在10-O-CeO2/CNFs-5-Sponge (d) 表面照片及其接触角和滚动角 (f);(e) 10-O-CeO2/CNFs-5-Glass表面液滴撞击照片

    Figure  10.  Photographs of spherical methylene blue aqueous dye on the surface of 10-O-CeO2/CNFs-5-Glass (a), 10-O-CeO2/CNFs-5-Paper (b), 10-O-CeO2/CNFs-5-Wood (c), and water droplets on the surface of 10-O-CeO2/CNFs-5-Sponge (d) as well as static contact angle and sliding angle (f); (e) Photographs of water droplet impact on the 10-O-CeO2/CNFs-5-Glass surface

    图  11  10-O-CeO2/CNFs-5-Paper自清洁过程

    Figure  11.  Self-cleaning process of 10-O-CeO2/CNFs-5-Paper

    图  12  Glass、CNFs-Glass和10-O-CeO2/CNFs-5-Glass的 (a) 紫外线透过率曲线和 (b) 紫外线透过率;Paper、CNFs-Paper和10-O-CeO2/CNFs-5-Paper的 (c) 紫外线透过率曲线和 (d) 紫外线透过率

    Figure  12.  UV transmittance curves (a) and UV transmittance (b) of Glass, CNFs-Glass, and 10-O-CeO2/CNFs-5-Glass; UV transmittance curves (c) and UV transmittance (d) of Paper, CNFs-Paper, and 10-O-CeO2/CNFs-5-Paper

    图  13  ((a)~(e)) 10-O-CeO2/CNFs-5-Sponge正己烷/水分离过程;(f) 油水分离后的海绵表面润湿性

    Figure  13.  ((a)-(e)) n-hexane/water separation process of 10-O-CeO2/CNFs-5-Sponge; (f) Wettability of sponge surface after oil/water separation

    表  1  Y-O-CeO2/纤维素纳米纤维(CNFs)-X复合材料配方

    Table  1.   Y-O-CeO2/cellulose nanofibers (CNFs)-X composite formulations

    Mass ratio Sample
    Ce(NO3)3·6H2O∶CNFs 1∶1 CeO2/CNFs-1
    3∶1 CeO2/CNFs-3
    5∶1 CeO2/CNFs-5
    7∶1 CeO2/CNFs-7
    X∶1 CeO2/CNFs-X
    OTMS:CeO2/CNFs-X 5∶1 5-O-CeO2/CNFs-X
    10∶1 10-O-CeO2/CNFs-X
    15∶1 15-O-CeO2/CNFs-X
    Y∶1 Y-O-CeO2/CNFs-X
    Notes: Y—Mass ratio of OTMS to CeO2/CNFs-X; X—Mass ratio of Ce(NO3)3·6H2O to CNFs.
    下载: 导出CSV
  • [1] YAN Y Y, GAO N, BARTHLOTT W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces[J]. Advances in Colloid and Interface Science,2011,169(2):80-105. doi: 10.1016/j.cis.2011.08.005
    [2] HU C, XIE X, REN K. A facile method to prepare stearic acid-TiO2/zinc composite coating with multipronged robustness, self-cleaning property, and corrosion resistance[J]. Journal of Alloys and Compounds,2021,882:160636. doi: 10.1016/j.jallcom.2021.160636
    [3] LONG Y, YIN X, MU P, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal,2020,401:126137. doi: 10.1016/j.cej.2020.126137
    [4] MA W, LI Y, ZHANG M, et al. Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of orga-nic contaminants, and antibacterial performances[J]. ACS Applied Materials & Interfaces,2020,12(31):34999-35010.
    [5] REN J, TAO F, LIU L, et al. A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation[J]. Carbohydrate Polymers,2020,232:115807. doi: 10.1016/j.carbpol.2019.115807
    [6] ZHAO S, YANG X, XU Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions[J]. Nano Research, 2022, 15: 5245-5255.
    [7] GUI L, LIN J, LIU J, et al. Difference and association of antibacterial and bacterial anti-adhesive performances between smart Ag/AgCl/TiO2 composite surfaces with switchable wettability[J]. Chemical Engineering Journal,2022,431:134103. doi: 10.1016/j.cej.2021.134103
    [8] ZHANG X, LIU S, SALIM A, et al. Hierarchical structured multifunctional self-cleaning material with durable superhydrophobicity and photocatalytic functionalities[J]. Small,2019,15(34):1901822. doi: 10.1002/smll.201901822
    [9] SINHA R S, DANGAYACH R, KWON Y N. Surface engineering for anti-wetting and antibacterial membrane for enhanced and fouling resistant membrane distillation performance[J]. Chemical Engineering Journal,2021,405:126702. doi: 10.1016/j.cej.2020.126702
    [10] YOON J, RYU M, KIM H, et al. Wet-style superhydrophobic antifogging coatings for optical sensors[J]. Advanced Materials, 2020, 32(34): 2002710.
    [11] GUO Z, LIU W, SU B L. Superhydrophobic surfaces: From natural to biomimetic to functional[J]. Journal of Colloid and Interface Science,2011,353(2):335-355. doi: 10.1016/j.jcis.2010.08.047
    [12] WANG T, ZHAO Y. Fabrication of thermally and mechani-cally stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications[J]. Food Hydrocolloids,2021,120:106877. doi: 10.1016/j.foodhyd.2021.106877
    [13] BAI Z G, BAI Y Y, ZHANG G P, et al. A hydrogen bond based self-healing superhydrophobic octadecyltriethoxy silan-ligno cellulose/silica coating[J]. Progress in Organic Coatings,2021,151:106104. doi: 10.1016/j.porgcoat.2020.106104
    [14] ZHU Z, FU S, BASTA A H. A cellulose nanoarchitectonic: Multifunctional and robust superhydrophobic coating toward rapid and intelligent water-removing purpose[J]. Carbohydrate Polymers,2020,243:116444. doi: 10.1016/j.carbpol.2020.116444
    [15] 何江, 王大威. 纤维素材料的改性与研究进展[J]. 复合材料学报, 2022, 39(7):3121-3130.

    HE Jiang, WANG Dawei. Modification and research progress of cellulose materials[J]. Acta Materiae Compositae Sinica,2022,39(7):3121-3130(in Chinese).
    [16] WANG X, GOU X, GUO Z. Robust superhydrophobic polyurea@cellulose nanocrystal coating[J]. New Journal of Chemistry,2020,44(27):11739-11745. doi: 10.1039/D0NJ02261F
    [17] KE W T, CHIU H L, LIAO Y C. Multifunctionalized cellulose nanofiber for water-repellent and wash-sustainable coatings on fabrics[J]. Langmuir,2020,36(28):8144-8151. doi: 10.1021/acs.langmuir.0c01145
    [18] 陈黄敬一, 俞娟, 蒋杰, 等. TEMPO氧化修饰的天然多糖纳米纤维增强复合材料及其功能化研究进展[J]. 复合材料学报, 2022, 39(4):1425-1445.

    CHEN HUANG Jingyi, YU Juan, JIANG Jie, et al. Research progress of TEMPO oxidation modified natural polysaccharide nanofiber reinforced composites and their functionality[J]. Acta Materiae Compositae Sinica,2022,39(4):1425-1445(in Chinese).
    [19] PEGAH K, KING A W T, PARTL G J, et al. Superhydrophobic paper from nanostructured fluorinated cellulose esters[J]. ACS Applied Materials & Interfaces,2018,10(13):11280-11288.
    [20] 周静, 沈葵忠, 房桂干, 等. 漂白竹浆疏水改性纳米纤丝化纤维素的制备和表征[J]. 林业工程学报, 2017, 2(2):101-106.

    ZHOU Jing, SHEN Kuizhong, FANG Guigan, et al. Preparation and characterization of hydrophobic nanofibrillated cellulose fiber from bleached bamboo pulp[J]. Journal of Forestry Engineering,2017,2(2):101-106(in Chinese).
    [21] ZHAO X, PARK D S, CHOI J, et al. Robust, transparent, superhydrophobic coatings using novel hydrophobic/hydrophilic dual-sized silica particles[J]. Journal of Colloid and Interface Science,2020,574:347-354. doi: 10.1016/j.jcis.2020.04.065
    [22] XU P, LI X. Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation[J]. Journal of Environmental Chemical Engineering,2021,9(4):105538. doi: 10.1016/j.jece.2021.105538
    [23] 李洪峰, 林祥文, 王宏光, 等. 纳米TiO2超疏水涂层的制备与性能[J]. 森林工程, 2021, 37(5):111-117. doi: 10.3969/j.issn.1006-8023.2021.05.015

    LI Hongfeng, LIN Xiangwen, WANG Hongguang, et al. Fabrication and properties of nano-TiO2 superhydrophobic coating[J]. Forest Engineering,2021,37(5):111-117(in Chinese). doi: 10.3969/j.issn.1006-8023.2021.05.015
    [24] CHEN Q, XIONG J, CHEN G, et al. Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material[J]. International Journal of Biological Macromolecules,2020,158:781-789. doi: 10.1016/j.ijbiomac.2020.04.250
    [25] 孙晓晗, 郭于田, 龙瑞, 等. 磁性超疏水棉布的制备及应用[J]. 森林工程, 2019, 35(3): 54-62.

    SUN Xiaohan, GUO Yutian, LONG Rui, et al. Preparation and application of magnetic superhydrophobic cotton cloth[J]. Forest Engineering, 2019, 35(3): 54-62(in Chinese).
    [26] XIE S, WANG Z, CHENG F, et al. Ceria and ceria-based nanostructured materials for photoenergy applications[J]. Nano Energy,2017,34:313-337. doi: 10.1016/j.nanoen.2017.02.029
    [27] WU Y, LIN X, CHEN L, et al. Preparation a skin disease UV protection polylactic acid film and crystallinity, mechani-cal properties characterization[J]. Materials Today Communications,2022,30:103085.
    [28] ZHANG B, HUYAN Y, WANG J, et al. Synthesis of CeO2 nanoparticles with different morphologies and their pro-perties as peroxidase mimic[J]. Journal of the American Ceramic Society, 2018, 102: 2218-2227.
    [29] LI X P, SUN Y L, XU Y Y, et al. UV-resistant and thermally stable superhydrophobic CeO2 nanotubes with high water adhesion[J]. Small,2018,14(27):1801040. doi: 10.1002/smll.201801040
    [30] WEI X L, LI N, YI W J, et al. High performance super-hydrophobic ZrO2-SiO2 porous ceramics coating with flower-like CeO2 micro/nano-structure[J]. Surface and Coatings Technology,2017,325:565-571. doi: 10.1016/j.surfcoat.2017.06.004
    [31] ZHANG C, LI C, SI X, et al. Mechanical durable ceria superhydrophobic coating fabricated by simple hot-press sintering[J]. Applied Surface Science,2020,529:147113. doi: 10.1016/j.apsusc.2020.147113
    [32] 何辉, 张忠明, 姜勇刚, 等. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(S2):50-55.

    HE Hui, ZHANG Zhongming, JIANG Yonggang, et al. Research progress on preparation methods of rare earth oxide hydrophobic coatings[J]. Materials Reports,2021,35(S2):50-55(in Chinese).
    [33] ABE K, YANO H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber[J]. Cellulose,2009,16(6):1017-1023. doi: 10.1007/s10570-009-9334-9
    [34] ZHOU P, LV J, XU H, et al. Functionalization of cotton fabric with bismuth oxyiodide nanosheets: Applications for photodegrading organic pollutants, UV shielding and self-cleaning[J]. Cellulose,2019,26(4):2873-2884. doi: 10.1007/s10570-019-02281-8
    [35] MOHAMMAD A, KHAN M E, CHO M H, et al. Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite[J]. Applied Surface Science,2021,565:150337. doi: 10.1016/j.apsusc.2021.150337
    [36] JIA S, LU Y, LUO S, et al. Thermally-induced all-damage-healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl[J]. Chemical Engi-neering Journal,2019,366:439-448. doi: 10.1016/j.cej.2019.02.104
    [37] CHEN F F, DAI Z H, FENG Y N, et al. Customized cellulose fiber paper enabled by an in situ growth of ultralong hydroxyapatite nanowires[J]. ACS Nano,2021,15(3):5355-5365. doi: 10.1021/acsnano.0c10903
    [38] CHEN S, SONG Y, XU F. Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5173-5181.
    [39] LIU Z, ZHENG J, DUAN L, et al. Biomass-assisted synthesis of CeO2 nanorods for CO2 photoreduction under visible light[J]. ACS Applied Nano Materials,2021,4(4):4226-4237. doi: 10.1021/acsanm.1c00720
    [40] CHEN W, YU H, LIU Y, et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J]. Cellulose,2011,18(2):433-442. doi: 10.1007/s10570-011-9497-z
    [41] WANG Q, XIE D, CHEN J, et al. Facile fabrication of superhydrophobic and photoluminescent TEMPO-oxidized cellulose-based paper for anticounterfeiting application[J]. ACS Sustainable Chemistry & Engineering,2020,8(35):13176-13184.
    [42] WANG J, WANG H, WANG Y, et al. Rapid fabrication of a transparent superhydrophobic coating: Potential application with pollution-free under construction[J]. Applied Physics A, 2020, 126(7): 508.
    [43] ZHU Q, CHU Y, WANG Z, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A, 2013, 1(17): 5386.
    [44] MATIN A, BAIG U, GONDAL M A, et al. Superhydrophobic and superoleophilic surfaces prepared by spray-coating of facile synthesized cerium(IV) oxide nanoparticles for efficient oil/water separation[J]. Applied Surface Science,2018,462:95-104. doi: 10.1016/j.apsusc.2018.08.104
    [45] ZHANG Z, ZHANG X, NIU D, et al. Large-pore, silica particles with antibody-like, biorecognition sites for efficient protein separation[J]. Journal of Materials Chemistry B, 2017, 5(22): 4214-4220.
    [46] LICHTENSTEIN K, LAVOINE N. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose[J]. Polymer Degradation and Stability,2017,146:53-60. doi: 10.1016/j.polymdegradstab.2017.09.018
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1274
  • HTML全文浏览量:  566
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-05
  • 录用日期:  2022-06-11
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回