基于虚拟样本生成技术与机器学习的热塑性缠绕NOL环拉伸力学性能预测

Mechanical performance prediction of thermoplastic filament wound composite based on virtual sample generation and machine learning

  • 摘要: 与传统热固性碳纤维复合材料相比,热塑性复合材料构件具有优良的耐温性能和可回收利用等优点。激光辅助热塑性复合材料缠绕原位成型过程中,激光功率、缠绕速率、芯模温度、缠绕张力等工艺参数对制品力学性能影响显著。为了准确预测不同工艺参数条件下热塑性缠绕复合材料NOL(Navy Ordnance Laboratory)制品的拉伸强度同时减少高昂的试验成本,本文将结合虚拟样本生成技术与机器学习方法建立热塑性缠绕复合材料构件拉伸力学性能预测模型。首先,搭建热塑性复合材料缠绕试验平台,通过正交试验获得原始样本数据;然后,结合趋势相似性评估法(TSA)和BP神经网络对热塑性复合材料制品拉伸力学性能进行预测并验证模型精度,最后探究原始样本比重和虚拟样本比重对拉伸强度预测精度的影响规律。研究表明,采用TSA和BP神经网络相结合的方法可显著提升预测精度与拟合能力,有效解决小样本问题。并且,随着原始样本比重和虚拟样本比重的增加,机器学习模型的预测精度和拟合能力都随之增强。

     

    Abstract: Compared with traditional thermoset carbon fiber composites, thermoplastic composites possess excellent performance, such as high thermal resistance and recyclability. During the laser-assisted in-situ filament winding process of thermoplastic composites, process parameters including laser power, winding speed, mandrel temperature, and winding tension have significant impacts on the mechanical properties of the final parts. To accurately predict the tensile strength of NOL(Navy Ordnance Laboratory) specimens under different in-situ filament winding process conditions while reducing the high experimental costs, this paper proposes a prediction modeling integrating virtual sample generation techniques with machine learning methods. First, a thermoplastic composite winding experimental platform is constructed, and orthogonal experiments are conducted to obtain the original data. Then, the Trend Similarity Assessment (TSA) method is combined with a Backpropagation (BP) neural network to predict the tensile mechanical properties of thermoplastic composite components and verify the model’s accuracy. Finally, the influence of the ratio between original samples and virtual samples on the prediction accuracy of tensile strength is explored. Results shown that the combination of TSA and BP neural networks can improve the prediction accuracy and solve the small sample problem effectively. Moreover, the increasing of original and virtual samples can enhance both the prediction precision and fitting ability of the model.

     

/

返回文章
返回