Progress in preparation and application of hydrophobic-oleophobic cellulose-based functional materials
-
摘要:
基于中国“限塑令”到“禁塑令”的逐步实施,利用可再生可降解生物质基材料代替塑料成为研究热点。纤维素是自然界中最丰富的可再生生物质资源,利用绿色可降解纤维素基材料代替塑料是解决塑料污染的有效途径。本文介绍了纤维素基疏水疏油膜材料、纤维素基疏水疏油纸基材料和纤维素基疏水疏油凝胶材料的制备方法,分析比较了3种纤维素基双疏材料制备方法的特点,阐述了纤维素基双疏材料在水油分离、耐磨纺织材料、阻燃材料等领域的应用,阐明了疏水疏油机制,并对纤维素基双疏材料的发展方向进行了展望。
Abstract:Based on the gradual implementation of China's "plastic restriction order" to "plastic ban order", the use of renewable and degradable biomass-based materials instead of plastics has become a research hotspot. Cellulose is the most abundant renewable biomass resources in nature. Replacing plastic with green degradable cellulose-based materials is an effective approach to solve plastic pollution. The preparation methods of cellulose-based hydrophobic-oleophobic film materials, cellulose-based hydrophobic-oleophobic paper materials and cellulose-based hydrophobic-oleophobic gel materials are introduced in this paper. The characteristics of different preparation methods of these three cellulose-based hydrophobic-oleophobic materials are analyzed and compared, and the application of cellulosic hydrophobic-oleophobic materials in the fields of water-oil separation, wear-resistant textile materials and flame-retardant materials are expounded. The hydrophobic-oleophobic mechanism are explained. The development direction of cellulose-based hydrophobic-oleophobic materials is also prospected.
-
齿轮和轴类零件常被用于高速、振动、摩擦磨损等恶劣工况,易产生断裂和磨损等失效[1-2]。此类零件多采用20 CrMnTi低碳钢材料,为提高零件使用寿命,使用电沉积方法在零件表面制备镀层增强零件性能已成为常用方法。Ni-P合金镀层具有良好的耐磨、耐腐蚀性能,还具有较高的硬度,因此被广泛应用于化工、汽车和机械等行业[3-5]。随着行业的进步与发展,Ni-P镀层已难以满足复杂特殊的使用环境,向镀液中添加纳米颗粒针对性的提升镀层性能已成为研究的热门方向[6]。目前一元纳米颗粒复合电沉积技术已比较成熟,如添加Al2O3、WC、SiC等硬质颗粒提升复合镀层的硬度及耐磨损性能[7-10],添加具有自润滑特性的BN(h)、MoS2、PTFE等降低复合镀层的摩擦系数[11-13],添加部分纳米颗粒还可以提高复合镀层的耐腐蚀性能和抗高温氧化性能[14-18]。
近年来部分学者已经对二元纳米颗粒复合镀层进行研究,徐义库[19]等通过脉冲电沉积法制备Ni-Mo-SiC-TiN复合镀层,两种纳米颗粒均匀的分散在Ni-Mo基体中显著提升了镀层的耐磨和耐腐蚀性;张银[20]等使用电沉积法制备不同浓度配比的 Ni-Co-P-BN(h)-Al2O3复合镀层,结果表明二元纳米颗粒掺杂配比会对纳米复合镀层表面产生巨大影响,且二元纳米颗粒复合镀层的耐磨性优于一元纳米颗粒复合涂层;王浩鑫[21]采用单脉冲电沉积制备Ni-TiC-GO复合镀层,该镀层具有优秀的减摩擦和耐磨性能。目前,研究对于二元纳米复合电沉积技术尤其是电沉积Ni-P-WC-BN(h)二元纳米复合镀层的表面结构和减磨耐磨性能的研究未见报道。
因此本文采用超声-脉冲电沉积法制备不同浓度BN(h)纳米颗粒的Ni-P-WC-BN(h)二元纳米颗粒复合镀层,与Ni-P、Ni-P-WC复合镀层对比,探究BN(h)质量浓度对复合镀层组织结构和减磨耐磨性能的影响
1. 实 验
1.1 基材预处理
采用20 CrMnTi钢为基体,其尺寸为40 mm×16 mm×12 mm。表面使用320#、800#、
1200 #、2000#金相砂纸打磨→抛光→去离子水超声清洗→电净除油→去离子水超声清洗并吹干→强活化→去离子水超声清洗并吹干→弱活化→去离子水超声清洗并吹干待用。1.2 实验条件
试验采用单因素实验法,首先通过预实验确定电沉积工艺参数、基础镀液成分(表1所示)和WC颗粒的最优浓度(30 g/L,纯度99.9%,平均粒度为50 nm)。实验装置如图1所示,工艺参数:电流密度3 A/dm2,脉冲频率2 kHz,占空比0.8,镀液温度50℃,电镀时间60 min,超声功率210 W,搅拌速率150 r/min,;阳极为纯Ni板。
表 1 电沉积Ni-P镀液配方Table 1. Formulation of electrodeposition Ni-P plating solutionElement Concentration/(g·L−1) NiSO4·6H2O 230 NiCl2·6H2O 30 H3PO3 5 NaH2PO2·H2O 8 NaC6H8O7·H2O 80 H3BO3 30 C₁₂H₂₅NaSO₄ 0.1 SC(NH₂)₂ 0.02 C₇H₅NO₃S 1 以上述内容为基础向镀液中分别添加15 g/L、20 g/L、25 g/L、30 g/L的BN(h)纳米颗粒(纯度99.9%,平均粒度为200 nm)。探究BN(h)添加量对Ni-P-WC-BN(h)复合镀层表面形貌、组织成分、显微硬度及耐磨性能的影响。
1.3 测试方法
试样制备完成后,使用线切割将样品切割为10 mm×10 mm×6 mm的测试试样进行下一步测试。使用Quanta FEG250扫描电子显微镜、能谱仪X Flash Detector 5030 BRUKER)对试样表面的镀层形貌和元素分布进行观察。采用Rigaku SmartLab SE型X射线衍射仪对复合镀层的物相结构进行分析。采用斯特尔显微硬度仪(Struers)对镀层的显微硬度进行测试,实验载荷
1000 g,加载时间10 s,在不同位置测量五次取平均值。采用CFT-I型综合材料表面性能测试仪(兰州中科凯华科技)对复合镀层的摩擦系数进行测试,磨件为Si3N4对磨球(直径4 mm,表面粗糙度Ra=0.06 μm,硬度为1400 -1700 HV1),加载载荷100 g,往复次数200次/min,往复行程4 mm,时长30 min。采用日本Keyence VK-X1000激光显微镜拍摄磨痕处形貌及磨痕截面轮廓并计算镀层磨损体积损失。2. 结果与讨论
2.1 复合镀层的微观形貌及元素分布
图2展示了不同镀液配方复合镀层的表面微观形貌,(a)图Ni-P镀层表面呈胞状结构,胞状结构的直径较大且分布不均匀。在镀液中加入WC纳米颗粒后,(b)图Ni-P-WC复合镀层表面和(a) Ni-P镀层相比粗糙,这是由于部分WC团聚被Ni-P镀层包裹在镀层内部,镀层表面产生了单元凸起,改变了阳极和阴极的间距,凸起部分受到电场力较大优先生长因此形成不平整的胞状物结构[22]。(c1)到(c4)图为在镀液中进一步添加15 g~30 g/L的BN(h)纳米颗粒的Ni-P-WC-BN(h)复合镀层表面的微观形貌,与Ni-P-WC复合镀层相比,随着BN(h)含量的增加,镀层表面平整度略有提高,究其原因,一方面两颗粒协同作用在一定程度上减小了团聚[20],另一方面还可能与BN(h)颗粒具有自润滑特性,层与层之间靠爱德华力连接易产生滑动有关[23]。但BN(h)浓度超过某一极值,镀液中纳米颗粒浓度过高从而使纳米颗粒团聚,阴极附近导电性下降从而使沉积效率降低。
图 2 复合镀层表面SEM图像 (a) Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 2. SEM image of composite plated surface (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)图3为不同镀液配方复合镀层的截面形貌及元素分布。WC纳米颗粒的加入后镀层厚度有所增加,但镀层内部存在裂痕等缺陷;加入BN(h)纳米颗粒后,镀层平整性略有提高且镀层内部缺陷减少,镀层厚度先增加后减小,在BN(h)浓度为25 g/L时最厚达80.0 μm。随着BN(h)浓度进一步增加,镀液中纳米颗粒浓度过高导致阴极导电性下降从而降低沉积效率,镀层厚度减小。
图 3 复合镀层截面SEM图像及截面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 3. SEM image of composite plating cross-section and section element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)由图中元素分布可以看出,WC和BN(h)纳米镶嵌在镀层中,镀层和基体的界面交界处存在约50 μm的中间区,该区域元素相互渗透,有助于改善镀层和基体的结合。
图4为不同镀镀液配方复合镀层表面元素分布,从元素分布图中可以看出Ni、P、W、B均匀分散在镀层中,并无明显团聚现象,这说明在该工艺参数下WC纳米颗粒和BN(h)纳米颗粒在镀层中分散效果较好。
图 4 复合镀层表面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 4. Composite plating surface element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)2.2 复合镀层的EDS能谱及相结构
图5为二元纳米颗粒掺杂下Ni-P-WC-BN(h)复合镀层的EDS能谱图,从图中可以看出,所制备的二元纳米复合镀层表面均含有Ni、P、W、C、B等元素,各元素含量随着BN(h)浓度的变化而变化。随着BN(h)添加量从15 g/L增加到30 g/L,B元素质量分数呈先波动增大后减小趋势,在BN(h)浓度为25 g/L时B元素的质量分数达到最大值0.85%;镀层表面W元素质量分数先减小后增大,与B元素呈相反趋势;镀层中P元素质量分数逐渐减小。这说明通过超声-脉冲电沉积法制备了Ni-P-WC-BN(h)二元纳米复合镀层。Ni元素的质量分数随着BN(h)浓度的提升而增大,这是因为镀液中加入WC和BN(h)两种纳米颗粒后,不同纳米颗粒相互作用,减小团聚,镀层表面吸附的颗粒数目增加,为Ni原子提供更好的成核条件[23],从而增大Ni元素的沉积量。
图6所示为不同复合镀层的XRD图谱,镀层在2θ为44.507°、51.846°、76.370°的位置上出现了的Ni峰,分别对应(111)、(200)、(220)晶面,与Ni-P-WC复合镀层相比,随着BN(h)浓度的增加,Ni-P-WC-BN(h)复合镀层的三个晶面方向出现了明显的结晶取向,且生长晶面以(111)面为主,这是由于Ni的结晶取向同时受到生长速度、方向的影响外还受到晶体竞争模式的影响[24];Ni-P-WC复合镀层的衍射图谱中,2θ为31.474°、35.626°、48.266°的位置出现了WC的特征峰,这说明WC颗粒成功沉积在复合镀层中;在Ni-P-WC-BN(h)复合镀层的衍射图谱中并没有表现出明显的BN(h)峰,但是可以检测到BN(h),结合图5中B元素的质量分数可知这可能是BN(h)颗粒沉积量较少所致。
表2为不同配方镀层中Ni(111)元素的晶粒尺寸数据,其中FWHM为半幅宽,D为镀层中垂直于晶面的晶粒尺寸。随着BN(h)浓度的提升,Ni(111)的晶粒尺寸先减小后增大,最小晶粒尺寸为8.9 nm,这是因为BN(h)对晶粒有一定的细化作用[25],合适浓度的BN(h)可以减小晶粒尺寸,但是BN(h)浓度过高会使晶粒尺寸增大。
表 2 不同复合镀层中Ni(111)元素的晶粒尺寸Table 2. Grain size of Ni(111) elements in different composite coatingsType of plating 2θ/(°) FWHM Diameter/nm Ni-P 44.480 0.941 9.2 Ni-P-WC 44.670 0.848 10.2 Ni-P-WC-BN(h)(15 g/L) 44.480 0.894 9.7 Ni-P-WC-BN(h)(20 g/L) 44.340 0.908 9.5 Ni-P-WC-BN(h)(25 g/L) 44.660 0.968 8.9 Ni-P-WC-BN(h)(30 g/L) 44.710 0.677 12.8 2.3 复合镀层的硬度
不同复合镀层的显微硬度测试结果如图7所示,从图中可知,Ni-P镀层硬度在700 HV1左右,添加WC纳米颗粒后镀层的显微硬度为
1141 HV1,这是因为WC在镀层中弥散分布,对镀层起到弥散强化作用[26],根据晶界强化原理,晶粒越细小镀层的显微硬度越高,WC纳米颗粒自身硬度较高且可以使镀层晶粒细化从而提高硬度。加入BN(h)后,随着BN(h)浓度从15 g/L到30 g/L的过程中,Ni-P-WC-BN(h)复合镀层硬度呈先增大后减小的变化趋势,在BN(h)浓度为25 g/L时Ni-P-WC-BN(h)复合镀层的硬度达到最大值115 6HV1,硬度最大值与Ni-P-WC复合镀层相当。分析认为, 纳米粒子在沉积过程中分为弱吸附和强吸附[27],随着镀液中纳米颗粒浓度增加,更多的颗粒发生强吸附作用,从而使镀层中纳米颗粒的含量增加从而使镀层硬度提升,但当其添加量过大时镀层易产生析氢现象[28],使镀层厚度下降,因此硬度下降。2.4 复合镀层的减磨耐磨性能
不同配方复合镀层的摩擦系数如图8所示,各复合镀层的摩擦系数均存在明显的摩擦系数急剧上升后趋于平稳的“磨合”阶段[29]。分析认为随着磨损试验的进行镀层表面的磨屑不断在磨痕处堆积,最终在压应力的作用下产生塑性变形使摩擦阻力增大,从而导致摩擦系数增大。
相同条件下,未添加纳米颗粒的Ni-P镀层的摩擦系数较大。摩擦系数和复合镀层中的硬质颗粒的尺寸、均匀性和数量有关[30],添加WC纳米颗粒后,纳米WC嵌入镀层,使晶粒细化并致密镀层组织,且WC自身硬度较高,因此可以减小摩擦时的接触面积从而降低摩擦系数。在Ni-P-WC镀层基础上添加BN(h)颗粒,随着BN(h)浓度增加,Ni-P-WC-BN(h)复合镀层摩擦系数呈先减小后增大的变化趋势。
摩擦磨损实验结束后,各镀层的磨损体积如表3所示,由数据可以看出Ni-P镀层磨损体积最大;加入WC纳米颗粒后镀层的磨损体积显著减小;加入BN(h)纳米颗粒后,随着浓度的提升,复合镀层的磨损量先减小后增大,Ni-P-WC-BN(h)(25 g/L)复合镀层的磨损体积最小,与Ni-P-WC复合镀层相当,显著优于其他镀层。将磨损体积与图5硬度测试结果对比,可以得出镀层磨损量和镀层硬度呈负相关。
表 3 镀层磨损体积Table 3. Plating wear volumeType of plating Wear volume /μm3 Ni-P 459553 Ni-P-WC 51945 Ni-P-WC-BN(h)(15 g/L) 256137 Ni-P-WC-BN(h)(20 g/L) 135765 Ni-P-WC-BN(h)(25 g/L) 53587 Ni-P-WC-BN(h)(30 g/L) 102966 各镀层磨痕形貌、轮廓线如图9所示,不同区域元素分布如表4所示。由磨痕形貌与图3镀层厚度对比及磨痕元素分布可知,磨损区域均不含Fe元素,摩擦磨损试验过程中镀层并未磨穿。Ni-P镀层磨痕与其他镀层磨痕相比较为明显,且磨痕处呈明显的黏着现象和犁沟状形貌,取磨痕中部长度为310 μm的截面轮廓线可知磨损过程中Ni-P复合镀层的磨损量较大,Ni-P涂层的硬度较低,易产生剥落现象,磨痕处含有少量Si元素,这说明Si3N4对磨球在摩擦磨损试验中摩擦热的作用下转移到镀层表面产生黏着磨损现象。镀层中加入WC纳米颗粒后,Ni-P-WC复合镀层磨痕表面无明显的犁沟形貌,这是因为WC颗粒在镀层中起到弥散强化作用,大幅度提升了复合镀层的硬度,减小了摩擦的接触面积,在磨损过程中,镀层先产生塑形形变,当形变量过大时部分WC颗粒脱落,形成镀层、WC粉末、摩擦副之间的三体磨损[31],此过程中摩擦热大幅增加导致氧化磨损,涂层的氧含量大幅提高。
图 9 复合镀层磨痕SEM(左)、磨痕形貌(中)、磨痕轮廓线(右):(a)Ni-P (b)Ni-P-WC (c)Ni-P-WC-BN(h)(15 g/L) (d)Ni-P-WC-BN(h)(20 g/L) (e)Ni-P-WC-BN(h)(25 g/L) (f)Ni-P-WC-BN(h)(30 g/L)Figure 9. SEM of composite plating wear marks (left), wear mark morphology (center), and wear mark contour lines (right): (a) Ni-P (b) Ni-P-WC (c) Ni-P-WC-BN(h)(15 g/L) (d) Ni-P-WC-BN(h)(20 g/L) (e) Ni-P-WC-BN(h)(25 g/L) (f) Ni-P-WC-BN(h)(30 g/L)表 4 磨痕元素分布Table 4. Distribution of abrasion elementsArea Atomic fraction of an element at% Ni O P Si W B Au 1 75.01 14.08 5.15 2.71 — — 2.34 2 90.1 — 6.4 — — — 3.49 3 23.16 70.39 1.49 — 2.87 — 1.28 4 84.64 2.48 3.43 — 6.14 — 3.31 5 56.59 31.00 3.36 1.35 5.41 0.35 1.93 6 63.12 4.00 3.58 — 3.13 23.59 2.60 7 37.49 53.33 2.07 1.16 3.40 0.76 1.79 8 37.68 52.95 2.56 1.06 4.05 0.2 1.50 9 66.25 9.97 4.38 0.01 4.05 14.04 1.29 10 72.42 15.68 3.59 0.15 5.63 0.13 2.42 11 58.76 7.96 3.03 0.11 4.56 20.69 4.88 12 46.65 27.96 1.23 4.89 4.47 8.99 5.82 BN(h)纳米颗粒加入后磨痕形貌如图9(c)-(f)所示,BN(h)添加量为15 g/L时,对比图8中摩擦系数曲线及磨痕处轮廓线可以发现Ni-P-WC-BN(h)(15 g/L)复合镀层发生了较为严重的剥落现象,剥落的镀层在磨痕处随摩擦副一起在镀层表面摩擦,从而导致摩擦系数短时内上升,随着摩擦实验的进行,剥落的镀层被压应力压碎,摩擦系数也逐渐减小到该涂层的正常水平;BN(h)添加量为20 g/L时,镀层的剥落现象大幅减少,磨痕处的Si元素含量增加,镀层存在黏着磨损现象,此时摩擦系数略小于Ni-P-WC复合镀层,但是由于BN(h)沉积量较少,因此减磨能力有限;BN(h)添加量为25 g/L时,镀层基本无剥落现象,磨痕较为平整,这是因为BN(h)微粒在镀层中和WC共沉积,呈弥散分布,由于BN(h)为六方结构,层与层之间靠范德华力连接,在摩擦中易产生滑动,一方面滑动的BN(h)可以在镀层和对磨球间形成固体润滑膜减小摩擦,另一方面BN(h)可以在摩擦过程中填补磨痕处的缺陷,使磨痕更加平整,此时摩擦形式为磨料磨损,伴随极微的黏着磨损;BN(h)添加量为30 g/L时,磨痕呈现较为明显的犁沟状并伴随着严重的黏着现象,此时纳米浓度颗粒浓度过高,电沉积效率下降,镀层硬度和厚度减小,镀层中Si元素含量大幅提高,镀层主要磨损形式为黏着磨损。
3. 结 论
(1)不同纳米颗粒的质量浓度对纳米复合镀层表面的微观形貌和物相结构有重要影响,Ni-P镀层表面呈现明显的胞状结构;加入WC纳米颗粒后,Ni-P-WC复合镀层表面呈不平整“菜花”状形貌;加入BN(h)纳米颗粒后,Ni-P-WC-BN(h)复合镀层微观形貌无明显变化,镀层平均晶粒尺寸先减小后增大,合适浓度的BN(h)对晶粒有一定的细化作用。
(2)试验范围内,纳米颗粒的添加可以有效的提升复合镀层的显微硬度和厚度。Ni-P-WC和Ni-P-WC-BN(h)(25 g/L)复合镀层硬度最大,平均硬度达到
1150 HV1,纳米颗粒浓度过低或者过高均会降低镀层的显微硬度。(3)试验范围内,Ni-P镀层在摩擦磨损实验中存在较为严重的黏着和剥落现象且磨损量较大;加入WC纳米颗粒后,镀层无黏着现象,磨损形式为磨料磨损和氧化磨损,此时摩擦系数较小且磨损量较低;进一步加入BN(h)纳米颗粒后,随着BN(h)浓度的提升,镀层的摩擦系数和磨损量先减小后增大,在BN(h)质量浓度为25 g/L时镀层的摩擦系数最低,在保证镀态高硬度的同时,摩擦系数较Ni-P-WC复合镀层降低22.6%,这说明二元纳米颗粒掺杂发挥了协同生长的优势,具有更好的减磨耐磨性能。
-
图 2 纤维素膜制备流程图:(a)静电纺丝[10];(b)等离子体处理[17];(c)喷涂法[20]
Figure 2. Flowchart of preparation of cellulose film: (a) Electrostatic spinning[10]; (b) Plasma processing[17]; (c) Spray method[20]
IL—Ionic liquid; RF—Radio frequency; MFC—Mass flow controller; PDMS—Polydimethylsiloxane; SDS—Sodium dodecyl sulfate; CNT—Carbon nanotubes
图 3 双疏复合纸基材料—纤维素基双疏纸:(a)氟碳表面活性剂(ST-110)-氟化烷基硅烷(FAS)-聚四氟乙烯(PTFE)纤维纸[27];(b)聚二甲基硅氧烷-纤维素纳米纤丝(PDMS-CNF)双层涂布纸[25];(c)植酸铵-聚甲基氢硅氧烷双疏纤维素纸[28];(d) PTFE-ZrO2改性纤维素纸[12]
Figure 3. Hydrophobic and oleophobic composite paper based material—Cellulose-based hydrophobic-oleophobic paper: (a) Fluorocarbon surfactant (ST-110)-fluoroalkyl silane (FAS)-polytetrafluoroethylene (PTFE) fiber paper[27]; (b) Polydimethylsiloxane-cellulose nanofiber(PDMS-CNF) double-coated paper[25]; (c) Ammonium phytate-polymethylhydrosiloxane hydrophobic oleophobic paper[28]; (d) PTFE-ZrO2 modified cellulose paper[12]
HMPAP—Hydrophobic M-xylylenediamine phytate ammonium
图 4 双疏复合凝胶材料—纤维素基双疏凝胶:(a)多孔和海绵状双疏硅型凝胶[32];(b)细菌纤维素/硫酸钡(BC/BaSO4)双疏气凝胶[29];(c)改性聚酰亚胺泡沫(PIF)纤维素凝胶[33];(d)氧化纳米原纤化纤维素(NFC)-聚乙烯亚胺(PEI)和乙二醇二缩水甘油醚(EGDE)气凝胶[34]
Figure 4. Hydrophobic and oleophobic composite gel material—Cellulose-based hydrophobic-oleophobic gels: (a) Porous and spongy hydrophobic oleophobic silicones[32]; (b) Bacterial cellulose/barium sulfate (BC/BaSO4) hydrophobic oleophobic gel[29]; (c) Modified polyimide foams (PIF) cellulose gel[33]; (d) Oxidized nanofibrillated cellulose (NFC)-polyethylene imide (PEI) and ethylene glycol hydrophobic oleophobic ether (EGDE) aerogel[34]
图 5 纤维素基双疏材料在水油分离领域应用示意图:(a)可逆双刺激响应润湿性智能无纺布(DSR-CZPP)气凝胶[37];(b) C-g-PEI气凝胶[34]
Figure 5. Application diagram of cellulose-based hydrophobic-oleophobic materials in the field of water-oil separation: (a) Dual-stimuli responsive composite ZnO-modified polypropylene nonwoven fabric (DSR-CZPP) aerogel[37]; (b) C-g-PEI aerogel[34]
MB—Methylene blue
图 6 纤维素基双疏材料的耐磨应用示意图:(a)辐照亚麻织物[38];(b) 1H,1H,2H,2H-全氟辛基三乙氧基硅烷-二脲丙基三乙氧基硅烷(PFOTES-PDMSU)棉织物[41]
Figure 6. Application diagram of cellulose-based hydrophobic-oleophobic materials in wear resistance: (a) Irradiated linen fabric[38]; (b) 1H,1H,2H,2H-perfluorooctyltriethoxysilane-diureapropyltriethoxysilane (PFOTES-PDMSU) cotton fabric[41]
AFM—Atomic force microscope
图 8 纤维素基双疏材料在空气净化方面应用示意图:(a)聚苯二甲酸乙二醇酯/SiO2/氟化聚氨酯(PET/SiO2/FPU)双层纳米纤维膜[47];(b) FPU/聚氨酯(PU)防雾霾纱窗SEM图像[48]
Figure 8. Schematic diagram of application of cellulose-based hydrophobic-oleophobic materials in air purification: (a) Polyethylene terephthalate/SiO2/fluorinated polyurethane (PET/SiO2/FPU) double-layer nanofiber film[47]; (b) SEM image of FPU/polyurethane (PU) anti-haze screen[48]
PP—Polypropylene
图 11 纤维素基双疏材料的结合力及表面构筑图:(a)十六烷基三甲基溴化铵(CTAB)与纳米晶纤维素(NCC)静电作用图[54];(b)十六烷基三甲氧基硅烷(HDTMS)与微晶纤维素(MCC)之间的化学缩合反应[55];(c) 两亲性聚乙二醇短链全氟(F-PEG)分子与1,6-二异氰酸己烷(HMDI)之间化学反应[56];(d)水分子间氢键作用;(e) Stöber二氧化硅颗粒与CO微纳米粗糙结构构筑图[59]
Figure 11. Binding force and surface structure of cellulose-based hydrophobic-oleophobic materials: (a) Electrostatic interaction between cetyl trimethyl ammonium bromide (CTAB) and nanocrystalline cellulose (NCC)[54]; (b) Chemical condensation reaction between hexadecyltrimethoxysilane (HDTMS) and microcrystalline cellulose (MCC)[55]; (c) Chemical reaction between perfluoropolyoxypropylene-polyethylene glycol block copolymer (F-PEG) molecule and hexamethylene diisocyanate (HMDI)[56]; (d) Hydrogen bonding between water molecules; (e) Stöber silica particles and CO micro-nano rough structure construction diagram[59]
SP—SP hybridization; IS—In situ growth
-
[1] 吉兴香. 以纸代塑研究方向及进展[C]//2021国际造纸技术报告会. 上海: 中国造纸学会, 中国制浆造纸研究院有限公司, 日本造纸学会. 2021: 265-282. JI Xingxiang. Research direction and progress of paper plastic replacement[C]//2021 International Paper Technology Report Conference. Shanghai: China Technical Association of Paper Industry, China National, PulpPaper Research Institute Co., Ltd., Japan Technical Association of PulpPaper, Industry, 2021: 265-282(in Chinese).
[2] KHORAIRI A N S A, SOFIAN-SENG N-S, OTHAMAN R, et al. A review on agro-industrial waste as cellulose and nanocellulose source and their potentials in food applications[J]. Food Reviews International, 2021, 39(2): 663-688. DOI: 10.1080/87559129.2021.1926478
[3] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8. DOI: 10.1007/s004250050096
[4] WOOD M J, BROCK G, KIETZIG A M. The penguin feather as inspiration for anti-icing surfaces[J]. Cold Regions Science and Technology, 2023, 213: 103903. DOI: 10.1016/j.coldregions.2023.103903
[5] IVANOVA E P, LINKLATER D P, ABURTO-MEDINA A, et al. Antifungal versus antibacterial defence of insect wings[J]. Journal of Colloid and Interface Science, 2021, 603: 886-897. DOI: 10.1016/j.jcis.2021.06.093
[6] DE PAOLA M G, MAMMOLENTI D, LUPI F R, et al. Formulation and process investigation of glycerol/starch suspensions for edible films production by tape casting[J]. Chemical Papers, 2021, 76(3): 1525-1538. DOI: 10.1007/s11696-021-01956-6
[7] TANG M, CHRISTIE K S S, HOU D Y, et al. Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method[J]. Journal of Membrane Science, 2021, 617: 118666. DOI: 10.1016/j.memsci.2020.118666
[8] ZHOU J H, LIU X Q, WANG X L. Photo-responsive cellulose nanocrystal modified fluorinated polyacrylate based on coumarin chemistry[J]. Applied Polymer, 2023, 140(16): e53757. DOI: 10.1002/app.53757
[9] WEI L, QIU Q H, WANG R W, et al. Influence of the processing parameters on needleless electrospinning from double ring slits spinneret using response surface methodology[J]. Journal of Applied Polymer Science, 2018, 135(27): 46407. DOI: 10.1002/app.46407
[10] ARALDIDASILVA B, DESOUSACUNHA R, VALÉRIO A, et al. Electrospinning of cellulose using ionic liquids: An overview on processing and applications[J]. European Polymer Journal, 2021, 147: 110283. DOI: 10.1016/j.eurpolymj.2021.110283
[11] KOH J J, PANG P F, CHAKRABORTY S, et al. Presence, origins and effect of stable surface hydration on regenerated cellulose for underwater oil-repellent membranes[J]. Journal of Colloid and Interface Science, 2023, 635: 197-207. DOI: 10.1016/j.jcis.2022.12.109
[12] ZHANG T T, LI Z H, LIU Y, et al. Electrospinning inorganic/organic nanohybridization membranes with hydrophobic and oleophobic performance[J]. Fibers and Polymers, 2023, 24(12): 4169-4179. DOI: 10.1007/s12221-023-00358-7
[13] DIZGE N, SHAULSKY E, KARANIKOLA V. Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes[J]. Journal of Membrane Science, 2019, 590: 117271. DOI: 10.1016/j.memsci.2019.117271
[14] CHEN M M, ZHANG X M, MA J P, et al. Experimental study on film thickness and the problem of free surface film flow in dip coating[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(5): 695-704. DOI: 10.1002/apj.1996
[15] AN X C, LIU Z Y, HU Y X. Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation[J]. Desalination, 2018, 432: 23-31. DOI: 10.1016/j.desal.2017.12.063
[16] WANG J S, CHEN X, REIS R, et al. Plasma modification and synthesis of membrane materials—A mechanistic review[J]. Membranes (Basel), 2018, 8(3): 56. DOI: 10.3390/membranes8030056
[17] HUANG C, PAN C H, TSAI C Y, et al. Fabrication of oleophobic fluorocarbon film by 13.56 MHz CH2F2/Ar plasma chemical vapor deposition[J]. Surface and Coatings Technology, 2013, 231: 47-52. DOI: 10.1016/j.surfcoat.2012.05.060
[18] OBERLINTNER A, VESEL A, NAUMOSKA K, et al. Permanent hydrophobic coating of chitosan/cellulose nanocrystals composite film by cold plasma processing[J]. Applied Surface Science, 2022, 597: 153562. DOI: 10.1016/j.apsusc.2022.153562
[19] HUANG C, TSAI C Y, JUANG R S, et al. Tailoring surface properties of cellulose acetate membranes by low-pressure plasma processing[J]. Journal of Applied Polymer Science, 2010, 118(6): 3227-3235. DOI: 10.1002/app.32604
[20] MA Y W, HE Q. Preparation of superhydrophobic conductive CNT/PDMS film on paper by foam spraying method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129327. DOI: 10.1016/j.colsurfa.2022.129327
[21] VISHWAKARMA A, SINGH M, WECLAWSKI B, et al. Construction of hydrophobic fire retardant coating on cotton fabric using a layer-by-layer spray coating method[J]. International Journal of Biological Macromolecules, 2022, 223: 1653-1666. DOI: 10.1016/j.ijbiomac.2022.10.231
[22] HUANG S, WANG X, ZHANG Y, et al. Cellulose nanofibers/polyvinyl alcohol blends as an efficient coating to improve the hydrophobic and oleophobic properties of paper[J]. Scientific Reports, 2022, 12: 16148. DOI: 10.1038/s41598-022-20499-8
[23] HUANG S, WANG X, ZHANG Y, et al. Water and oil-grease barrier properties of PVA/CNF/MBP/AKD composite coating on paper[J]. Scientific Reports, 2023, 13: 12292. DOI: 10.1038/s41598-023-38941-w
[24] ZHANG F, ZHAO H, SHA L, et al. One-step fabrication of eco-friendly multi-functional amphiphobic coatings for cellulose-based food packaging[J]. International Journal of Biological Macromolecules, 2023, 253: 127578. DOI: 10.1016/j.ijbiomac.2023.127578
[25] YI K, FU S Y, YI Z D, et al. Nanocellulose and polysiloxane coatings for strength enhancement and oil-proof and hydrophobicity improvement of recycled pulp sheets[J]. BioResources, 2023, 18(2): 2826-2841. DOI: 10.15376/biores.18.2.2826-2841
[26] SONG Z P, LI J R, XIAO H N. Effect of plasma-induced polymerization on contact angle of paper[J]. Advanced Materials Research, 2011, 396-398: 1619-1623. DOI: 10.4028/www.scientific.net/AMR.396-398.1619
[27] ZENG Z L, QIN J S, WANG Z H, et al. A new type of lipophilic hydrophobic self-repairing cellulose insulating paper developed with ST-110/FAS/PTFE ternary system as coating substrate[J]. High Voltage, 2023, 9(2): 474-483. DOI: 10.1049/hve2.12383
[28] WU T H, GU Y Q, ZHAO D, et al. A multifunctional cellulose paper with excellent flame retardancy, hydrophobicity and oil/water-separation performance via reaction with ammonium phytate and poly(methylhydrosiloxane)[J]. Polymer Degradation and Stability, 2024, 223: 110738. DOI: 10.1016/j.polymdegradstab.2024.110738
[29] WANG Q, ZHONG S L, ZHENG Z H, et al. Bacterial cellulose based three-dimensional porous composites with remarkable amphiphobic monolith properties for passive daytime radiative cooling[J]. Materials Letters, 2023, 352: 135220. DOI: 10.1016/j.matlet.2023.135220
[30] HALIM A, XU Y C, LIN K H, et al. Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane[J]. Separation and Purification Technology, 2019, 224: 322-331. DOI: 10.1016/j.seppur.2019.05.005
[31] XIE X, LIU L, ZHANG L, et al. Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation[J]. Carbohydrate Polymers, 2020, 229: 115467. DOI: 10.1016/j.carbpol.2019.115467
[32] ZHANG X, ZHU W Z, PARKIN I P. A free-standing porous silicon-type gel sponge with superhydrophobicity and oleophobicity[J]. RSC Advances, 2017, 7(1): 31-36. DOI: 10.1039/c6ra25636h
[33] LIU X C, ZHANG R B. Preparation of a novel multifunctional integrated polyimide foam with high temperature resistance and hydrophobic and oleophobic properties[J]. Materials Letters, 2024, 361: 136153. DOI: 10.1016/j.matlet.2024.136153
[34] FAN B J, WU L L, MING A X, et al. Highly compressible and hydrophobic nanofibrillated cellulose aerogels for cyclic oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 242: 125066. DOI: 10.1016/j.ijbiomac.2023.125066
[35] WANG W, LIN J, CHENG J, et al. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties[J]. Journal of Hazardous Materials, 2020, 385: 121582. DOI: 10.1016/j.jhazmat.2019.121582
[36] FU B, YANG Q, YANG F. Flexible underwater oleophobic cellulose aerogels for efficient oil/water separation[J]. ACS Omega, 2020, 5(14): 8181-8187. DOI: 10.1021/acsomega.0c00440
[37] WANG D C, YANG X G, YU H Y, et al. Smart nonwoven fabric with reversibly dual-stimuli responsive wettability for intelligent oil-water separation and pollutants removal[J]. Journal of Hazardous Materials, 2020, 383: 121123. DOI: 10.1016/j.jhazmat.2019.121123
[38] TAIBI J, ROUIF S, AMEDURI B, et al. Radiation induced graft polymerization of fluorinated monomers onto flax fabrics for the control of hydrophobic and oleophobic properties[J]. Polymer, 2023, 281: 126132. DOI: 10.1016/j.polymer.2023.126132
[39] DENG B, CAI R, YU Y, et al. Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48): 5473-5477. DOI: 10.1002/adma.201002614
[40] 赵迎, 朱杰辉, 林小茜, 等. 自清洁防水透湿防护面料的制备及性能研究[J]. 棉纺织技术, 2023, 51(6): 1-6. DOI: 10.3969/j.issn.1001-7415.2023.06.002 ZHAO Ying, ZHU Jiehui, LIN Xiaoqian, et al. Preparation and properties of self-cleaning waterproof permeable protective fabric[J]. Cotton Textile Technology, 2023, 51(6): 1-6(in Chinese). DOI: 10.3969/j.issn.1001-7415.2023.06.002
[41] VILČNIK A, JERMAN I, VUK A S, et al. Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics[J]. Langmuir, 2009, 25(10): 5869-5880. DOI: 10.1021/la803742c
[42] 张玉彤, 刘云, 董朝红, 等. 纳米纤维素基阻燃材料的制备及其应用进展[J]. 精细化工, 2023, 41(5): 1-10. DOI: 10.13550/j.jxhg.20230343 ZHANG Yutong, LIU Yun, DONG Zhaohong, et al. Progress in preparation and application of nanocellulose based flame retardant materials[J]. Fine Chemical Engineering, 2023, 41(5): 1-10(in Chinese). DOI: 10.13550/j.jxhg.20230343
[43] KADER A H A, DACRORY S, KHATTAB T A, et al. Hydrophobic and flame-retardant foam based on cellulose[J]. Journal of Polymers and the Environment, 2022, 30(6): 2366-2377. DOI: 10.1007/s10924-021-02355-4
[44] ESMERYAN K D, FEDCHENKO Y I, GYOSHEV S D, et al. On the development of ultradurable extremely water-repellent and oleophobic soot-based fabrics with direct relevance to sperm cryopreservation[J]. ACS Applied Bio Materials, 2022, 5(7): 3519-3529. DOI: 10.1021/acsabm.2c00457
[45] 丁晨辉, 王威, 宋晓明. 空气污染对区域科技创新的双边影响效应分析[J]. 统计与决策, 2024, 40(6): 84-88. DOI: 10.13546/j.cnki.tjyjc.2024.06.015 DING Chenhui, WANG Wei, SONG Xiaoming. Analysis of bilateral effects of air pollution on regional science and technology innovation[J]. Statistics and decision, 2024, 40(6): 84-88(in Chinese). DOI: 10.13546/j.cnki.tjyjc.2024.06.015
[46] 黄梅, 曾娅莉, 霍婷婷, 等. 6种可吸入性矿物粉尘致A549细胞炎症因子的变化研究[J]. 中国工业医学杂志, 2016, 29(5): 362-365, 401. DOI: 10.13631/j.cnki.zggyyx.2016.05.015 HUANG Mei, ZENG Yali, HUO Tingting, et al. Changes of inflammatory factors induced by 6 kinds of inhalable mineral dust in A549 cells[J]. Chinese Journal of Industrial Medicine, 2016, 29(5): 362-365, 401(in Chinese). DOI: 10.13631/j.cnki.zggyyx.2016.05.015
[47] ZHOU G, XU Z, CHEN G, et al. Hydrophobic/oleophobic nanofibrous filter media with bead-on-string structure for efficient personal protection of dust in mines[J]. Environmental Research, 2023, 226: 115699. DOI: 10.1016/j.envres.2023.115699
[48] 邵伟力, 岳万里, 曹颖, 等. 疏水疏油聚氨酯纳米纤维膜的制备及防雾霾窗纱的应用研究[J]. 产业用纺织品, 2019, 37(9): 13-18. DOI: 10.3969/j.issn.1004-7093.2019.09.003 SHAO Weili, YUE Wanli, CAO Ying, et al. Preparation of hydrophobic and oleophobic polyurethane nanofiber film and application of anti-haze window screen[J]. Industrial Textiles, 2019, 37(9): 13-18(in Chinese). DOI: 10.3969/j.issn.1004-7093.2019.09.003
[49] YOUNG T. An essay on the cohesion of fluids[J]. The Royal Society, 1805, 65: 171-172. DOI: 10.1098/rstl.1805.0005
[50] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society, 1936, 28(8): 988-994. DOI: 10.1021/ie50320a024
[51] 王培壮. 甲壳素纳米纤维的制备及其透明涂层疏水疏油改性机理研究[D]. 长春: 吉林大学, 2023. WANG Peizhuang. Preparation of chitin nanofibers and study on hydrophobic and oleophobic modification mechanism of transparent coatings[D]. Changchun: Jilin University, 2023(in Chinese).
[52] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. DOI: 10.1039/tf9444000546
[53] DETTRE R H, JOHNSON JR R E. Contact angle hysteresis. IV. contact angle measurements on heterogeneous surfaces[J]. Contact Angle Hysteresis, 1965, 69(5): 1507-1515. DOI: 10.1021/j100889a012
[54] ZAINUDDIN N, AHMAD I, KARGARZADEH H, et al. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin[J]. Carbohydrate Polymers, 2017, 163: 261-269. DOI: 10.1016/j.carbpol.2017.01.036
[55] WANG X Y, XU S M, TAN Y, et al. Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil-water separation[J]. Carbohydrate Polymers, 2016, 140: 188-194. DOI: 10.1016/j.carbpol.2015.12.028
[56] CHEN J J, ZHANG Y X, CHEN C, et al. Cellulose sponge with superhydrophilicity and high oleophobicity both in air and under water for efficient oil-water emulsion separation[J]. Macromolecular Materials and Engineering, 2017, 302(9): 1700086. DOI: 10.1002/mame.201700086
[57] 陈庆辉, 朱梦琳, 吴朝军, 等. 纳米纤维素中氢键网络调控技术的研究进展[J]. 中国造纸学报, 2023, 42(3): 104-113. DOI: 10.11980/j.issn.0254-508X.2023.03.014 CHEN Qinghui, ZHU Menglin, WU Chaojun, et al. Research progress of hydrogen bond network regulation technology in nanocellulose[J]. China Pulp and Paper, 2023, 42(3): 104-113(in Chinese). DOI: 10.11980/j.issn.0254-508X.2023.03.014
[58] ZHU R, FU X, JIN S, et al. Water and oil-resistant paper materials based on sodium alginate/hydroxypropyl methylcellulose/polyvinyl butyral/nano-silica with biodegradable and high barrier properties[J]. International Journal of Biological Macromolecules, 2023, 225: 162-171. DOI: 10.1016/j.ijbiomac.2022.10.104
[59] VASILJEVIĆ J, ZORKO M, TOMŠIČ B, et al. Fabrication of the hierarchically roughened bumpy-surface topography for the long-lasting highly oleophobic "lotus effect" on cotton fibres[J]. Cellulose, 2016, 23(5): 3301-3318. DOI: 10.1007/s10570-016-1007-x
[60] NORDENSTRÖM M, RIAZANOVA A V, JÄRN M, et al. Superamphiphobic coatings based on liquid-core microcapsules with engineered capsule walls and functionality[J]. Scientific Reports, 2018, 8: 3647. DOI: 10.1038/s41598-018-21957-y
-
期刊类型引用(12)
1. 贾宝惠,任鹏,宋挺,崔开心,肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响. 材料导报. 2024(05): 246-252 . 百度学术
2. 张宇,郭盼盼,熊婕,黄峰,王波. 循环湿热环境对树脂基复合材料弯曲性能的影响. 科学咨询(科技·管理). 2024(02): 135-138 . 百度学术
3. 牛存洋,寿文凯,顾海萍,孔德良. 以价值观为导向的生态学课程思政教学设计——以种群生活史对策为例. 科学咨询(教育科研). 2024(03): 134-137 . 百度学术
4. 刘鸿森,黄凯,黄金钊,韩晓剑,逯浩,骆杨,张莉,果立成. 考虑温度效应的复合材料紧固结构面外拉脱性能和失效机制. 复合材料学报. 2024(09): 4778-4790 . 本站查看
5. 王慧敏,任亮,范微微,陈阳,孙丽. 基于锥体结构复合材料制品布带缠绕成型关键工艺参数优化. 宇航材料工艺. 2024(05): 87-92 . 百度学术
6. 樊俊铃,马国庆,焦婷,陈曾美,韩啸. 温度和湿度对碳纤维增强复合材料老化影响研究综述. 航空科学技术. 2023(09): 1-13 . 百度学术
7. 刘宋婧,冯宇,张腾,毕亚萍,张铁军. 航空复合材料加筋板湿热环境下吸湿性能. 航空动力学报. 2023(09): 2231-2240 . 百度学术
8. 王静,程健,肖存勇,贾松,任荣,熊需海. 先进聚合物基复合材料超声焊接研究进展. 高分子材料科学与工程. 2023(09): 166-173 . 百度学术
9. 蒋平,吕太勇,吴丽华,José Pérez-Rigueiro,胡梦蕾,徐丽萍,黄诗怡,王安萍,郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异. 材料导报. 2023(23): 237-245 . 百度学术
10. 吴志猛. 聚四氟乙烯芳纶1313纤维树脂基复合材料的摩擦学性能研究. 化学工程与装备. 2022(09): 40-41+44 . 百度学术
11. 王志平,陈灏,路鹏程. 电-湿耦合作用下碳纤维增强树脂基复合材料损伤机制. 中国塑料. 2022(10): 39-45 . 百度学术
12. 史超帆,陈叔平,王洋,金树峰,于洋,何远新,杨帅,熊珍艳,史庆智. 纤维方向对环氧树脂/玻纤复合材料导热性能影响. 工程塑料应用. 2022(11): 108-116 . 百度学术
其他类型引用(9)
-
目的
基于中国“限塑令”到“禁塑令”的逐步实施,利用可再生可降解生物质基材料代替塑料成为研究热点。纤维素是自然界中最丰富的可再生生物质资源,旨在利用绿色可降解纤维素基材料代替塑料解决塑料污染问题。阐述三种纤维素基双疏材料的制备方法及其应用,旨在为促进纤维素基复合材料的规模化生产和推广应用提供理论参考。
方法(1)阐述了纤维素基双疏复合材料的制备方法及特点,纤维素基双疏复合膜材料的制备方法主要介绍了流延法、浸涂法、喷涂法、静电纺丝法和等离子体处理技术等,分析比较各种方法的优缺点;纤维素基双疏复合纸基材料的制备方法主要介绍了常见的涂布法、二次涂布法和喷涂法;纤维素基双疏复合凝胶材料的制备方法,主要介绍了冷冻干燥、常压干燥等方法。(2)综述了纤维素基双疏复合材料在油水分离、耐磨纺织材料、阻燃材料和空气净化等领域的应用。(3)阐明了纤维素基双疏复合材料疏水疏油机制,并对纤维素基双疏材料的发展方向进行了展望。
结果(1)纤维素基双疏复合膜材料的制备方法优缺点为:①流延法操作简单、生产效率高,可大批量生产,但存在的缺陷是在干燥过程中出现样品厚薄不均匀,易出现气泡或条纹现象;②静电纺丝法可以避免流延法存在的厚薄不均匀等缺陷,并且可以生产出纳米级聚合物纤维,且具有较高的比表面积,但仅靠聚合物纤维之间的物理堆叠形成的力学性能不够理想;③浸涂法具有简单易操作和能提高膜材料双疏性能的优势,但该方法容易产生流挂现象、溶剂挥发损失大、浸涂处理时间长和浸涂溶剂利用率较低等问题;④等离子体处理技术可以制备出稳定的超疏水膜,缺点是对制备环境要求较高(需要干净无尘,通常要求在真空条件下进行),样品可能会出现退化现象;⑤喷涂法操作简单,在纺织工业中对于开发新型多功能产品拥有巨大潜力,但对基材表面形态要求较高,经常会出现喷涂不均匀或与基材粘附性较差等问题。纤维素基双疏复合纸基材料的制备方法及特点为:①涂布法最常用,可大规模生产,缺点是在干燥时复合纸基材料表面难以形成理想的平整状态,并且涂布液在配置、倒入等过程中会产生气泡,影响复合纸基材料的表面结构,用超声、真空等脱泡方式会耗费时间,且黏稠溶液难以脱泡;②喷涂法可以克服涂布法在干燥时的缺陷,但会造成喷涂不均匀的缺陷;③等离子体处理技术具有优异的表面修饰特点,可以实现纤维素基材料超疏水/超疏油的优点。纤维素基双疏复合凝胶材料的制备方法及特点为:常压干燥和冷冻干燥制备的凝胶均可以形成高的孔隙率和比表面积,并且纤维素基凝胶具有环保、工艺简单、可循环利用、性能较高的优势,在水油分离领域和油污污染的海水净化领域具有巨大应用潜力。(2)纤维素基双疏材料在油水分离、耐磨纺织品、阻燃材料以及空气净化方面均有广阔的应用前景:①油水分离方面:脱乙酰基醋酸纤维素纳米纤维膜(d-CA)在水中油接触角为130°,水通量和除油通量分别达到29,000 L/(m·h)和38,000 L/(m·h),而商用醋酸纤维素膜(c-CA)水通量仅为1000 L/(m·h),d-CA在石油醚/水混合物中分离循环稳定性也高达99.97%。②耐磨纺织品方面:聚二甲基硅氧烷(PDMS)-涤纶织物(PET)-热塑性聚氨酯(TPU)纳米纤维素膜复合制备得到超疏水透湿面料TPU-PD-MS@PET。TPU-PD-MS@PET涤纶织物经过600次水洗和3000次摩擦后,水接触角仍具有147.7°,经过数千次摩擦后其水接触角几乎不变,水蒸气透过量为2602.2 g/(m·24 h),拉伸载荷为450.4 N,固体颗粒过滤性能达到99.9%,并且当PDMS质量浓度为5 g/L时,TPU-PD-MS@PET涤纶织物的自清洁性能最好,使用少量水即可将污渍冲净。③阻燃材料方面:将菜籽油烟灰、氰基丙烯酸酯胶和氟化合物沉积在棉织物上得到超耐磨双疏烟灰织物,该织物保持恒定的传热阻力并能减轻生物体的低温损伤,能使缓慢冷冻后精子细胞的运动能力得到更好恢复,水、油接触角最高分别为148°和135°。④空气净化方面:苯二甲酸乙二醇酯/SiO/氟化聚氨酯双层疏水疏油纳米纤维膜,其水、油接触角分别为130.9°和119.3°,通过膜对气溶胶颗粒的惯性碰撞和拦截作用对直径0.3 μm~10 μm范围内的NaCl和DEHS气溶胶颗粒的过滤效率均在99.96%和99.72%以上,经过10次过滤后,过滤效率仍保持在99%左右。(3)材料表面的疏水疏油理论:由莲花效应引出表面润湿理论,介绍了三种经典理论,分别是Youngs方程、Wenzel模型理论和Cassie模型理论,阐述纤维素基双疏材料表面的高表面粗糙度和低表面能基本原理,对纤维素基双疏材料的结合力进行分析,主要包括静电作用力、化学键结合力、氢键结合力,高粗糙表面的构建方法有加入造孔剂、原位生长法、表面涂覆等。
结论利用储量丰富、绿色可降解纤维素基材料代替塑料是中国实施“禁塑令”和实现双碳经济的重要途径。纤维素经过双疏改性后可制备多种性能和多种用途的纤维素基双疏材料,目前研究开发的纤维素基双疏材料多用于废水处理、水油分离、空气净化、性能改善等,虽然纤维素基双疏材料的研究已取得一定进展,但纤维素基双疏材料制备过程存在成本高、所用溶剂需要处理回收、制备工艺条件苛刻、含氟试剂污染等问题,限制了纤维素基双疏材料应用范围的扩大和应用效果的提高,需要进行工艺技术优化和生产中试后才能进行大规模生产和工业化应用。为了实现中国清洁可持续低碳经济发展目标,需要持续研究开发无氟、绿色、可降解等清洁制备工艺技术,改善纤维素基双疏材料的性能,提高其重复使用率,基于纤维素材料的绿色可再生特性,进一步扩大其应用范围,实现纤维素基生物质组分的功能高值化利用。