基于软模板定向组装-煅烧工艺制备中空树莓微球及低介电复合环氧树脂体系设计

Design of hollow raspberry-like microspheres via soft-template-directed assembly and calcination for low-dielectric composite epoxy resin system

  • 摘要: 本研究创新性采用软模板定向组装-煅烧协同工艺,成功制备具有精细结构的二氧化硅中空树莓微球(HRP),并首创性构建了HRP/环氧树脂(E51)低介电复合材料体系。基于Pickering乳液聚合策略,通过3-异丁烯酰氧丙基三甲氧基硅烷(TPM)对SiO2纳米颗粒进行表面改性,精准调控油/水界面稳定行为,成功制备杂化中空微球(HHRP)。经600℃高温煅烧后获得壳层厚度25 nm、粒径360 nm的HRP结构,实现软模板及有机组分的完全去除。采用原位固化体相复合材料工艺实现HRP(5~10wt%)与E51的有机-无机复合,系统揭示了材料结构-性能的构效关系。研究结果表明:HRP在固化过程中保持完整中空结构,其致密Si-O-Si网络有效阻隔树脂渗透,形成独特"核-壳"强化机制。断面形貌分析表明,HRP可诱导高密度塑性空穴生成,通过裂纹尖端钝化实现应力耗散的增韧机制,显著改善复合材料断裂韧性。介电性能测试显示10% HRP/E51复合体系在101~106 Hz频段内平均介电常数降至(4.11),较纯E51树脂(5.35)降低23.2%,且可与Lichtenecker模型理论值高度吻合。热分析结果表明,HRP的引入可有效提升体系热稳定性,初始分解温度(T5%)升14℃至386℃,最大失重速率对应温度(Tmax)提高10℃至430℃。玻璃化转变温度(Tg)由72℃升至84℃,实现热响应性能的全面优化。该研究突破性实现了介电常数与热稳定性的协同提升,为高频电子封装材料设计与先进热管理系统开发提供新策略,在5G通讯、高密度集成电路等前沿领域具有重要应用价值。

     

    Abstract: A soft-template-directed assemblyand calcination strategy was innovatively developed to synthesize silica hollow raspberry-like microspheres (HRP) with refined architectures and pioneered the construction of an HRP/epoxy resin (E51) low-dielectric composite system. Utilizing a Pickering emulsion polymerization approach, hybrid hollow microspheres (HHRP) were fabricated by precisely regulating oil/water interfacial stability through surface modification of SiO2 nanoparticles with 3-(methacryloyloxy)propyltrimethoxysilane (TPM), followed by calcination at 600℃ to achieve HRP structures with a shell thickness of 25 nm and a uniform particle size of 360 nm, ensuring complete removal of soft templates and organic residues. An in-situ curing and blending process enabled the integration of HRP (5~10wt%) into E51, systematically elucidating the structure-property relationships. HRP retained intact hollow structures during curing, forming a dense Si-O-Si network that effectively blocked resin infiltration, establishing a unique core-shell reinforcement mechanism. Fracture surface analysis revealed HRP induced high-density plastic cavities, significantly enhancing fracture toughness via toughening mechanisms of stress dissipation by crack tip blunting. Dielectric testing indicated the 10% HRP/E51 composite exhibited an average dielectric constant of 4.11 (101~106 Hz), representing a 23.2% reduction compared to E51 (5.35), with excellent agreement to the Lichtenecker model. Thermal analysis confirmed HRP incorporation increased the initial decomposition temperature (T5%) by 14℃ to 386℃, the peak mass loss temperature (Tmax) by 10℃ to 430℃, and the glass transition temperature (Tg) from 72℃ to 84℃, achieving comprehensive thermal optimization. This work breakthroughs in synergistically enhancing dielectric and thermal properties, offering novel strategies for high-frequency electronic packaging materials and advanced thermal management systems, with significant potential in 5G communications and high-density integrated circuits.

     

/

返回文章
返回