GO@P-g-C3N4复合光催化材料的制备及其抗菌性能

Preparation and antibacterial properties of GO@P-g-C3N4 composite photocatalytic material

  • 摘要: 通过静电自组装法制备了质子化石墨相氮化碳(P-g-C3N4)涂层的氧化石墨烯(GO)复合材料(GO@P-g-C3N4),探究其在光催化抗菌方面的应用。通过SEM、TEM、XRD、XPS、Raman、UV-Vis DRS、稳态/瞬态荧光光谱(PL)等对GO@P-g-C3N4复合材料的微观形貌、晶态结构及光电性能进行表征,并通过调控P-g-C3N4的含量对GO@P-g-C3N4复合材料进行了结构优化。在模拟太阳光照射条件下,以大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)为实验对象,研究了不同P-g-C3N4含量的GO@P-g-C3N4复合材料的光催化抗菌性能,以及光照时间对抗菌性能的影响。结果表明:GO与P-g-C3N4以质量比为1∶4合成的GO@P-g-C3N4-80%复合材料,光照100 min后,对E. coliS. aureus的抑菌率分别为98.80%和95.99%;光照150 min后,对E. coliS. aureus的抑菌率均达到99%以上,抗菌性能显著优于GO与P-g-C3N4

     

    Abstract: A protonated graphite carbon nitride (P-g-C3N4) coated graphene oxide (GO) composite material (GO@P-g-C3N4) was prepared via electrostatic self-assembly method, and its application in photocatalytic antibacterial activities was investigated. The micro morphologyies, crystalline structures, and photoelectric properties of the GO@P-g-C3N4 composite material were characterized by SEM, TEM, XRD, XPS, Raman, UV-Vis DRS and steady-state/transient fluorescence spectroscopy (PL), etc. The structure of GO@P-g-C3N4 composite material was optimized by adjusting the content of P-g-C3N4. Under simulated solar light irradiation conditions, E. coli and S. aureus were used as experimental targets to study the photocatalytic antibacterial performance of GO@P-g-C3N4 composites with different P-g-C3N4 contents and the influence of irradiation times on antibacterial performance. It was found that GO@P-g-C3N4-80% composite material synthesized with a mass ratio of 1∶4 between GO and P-g-C3N4 exhibited antibacterial rates against E. coli and S. aureus of 98.80% and 95.99%, respectively after 100 minutes of illumination; after 150 minutes of illumination, antibacterial rates against both E.coli and S.aureus exceeded 99%, demonstrating significantly better antibacterial performance compared to individual GO or P-g-C3N4.

     

/

返回文章
返回