Loading [MathJax]/jax/output/SVG/jax.js

GO@P-g-C3N4复合光催化材料的制备及其抗菌性能

张雪婷, 高晓红, 杨旭礼, 包育闻, 王梁宇

张雪婷, 高晓红, 杨旭礼, 等. GO@P-g-C3N4复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2025, 42(2): 900-911. DOI: 10.13801/j.cnki.fhclxb.20240511.002
引用本文: 张雪婷, 高晓红, 杨旭礼, 等. GO@P-g-C3N4复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2025, 42(2): 900-911. DOI: 10.13801/j.cnki.fhclxb.20240511.002
ZHANG Xueting, GAO Xiaohong, YANG Xuli, et al. Preparation and antibacterial properties of GO@P-g-C3N4 composite photocatalytic material[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 900-911. DOI: 10.13801/j.cnki.fhclxb.20240511.002
Citation: ZHANG Xueting, GAO Xiaohong, YANG Xuli, et al. Preparation and antibacterial properties of GO@P-g-C3N4 composite photocatalytic material[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 900-911. DOI: 10.13801/j.cnki.fhclxb.20240511.002

GO@P-g-C3N4复合光催化材料的制备及其抗菌性能

基金项目: 江苏省大学生创新创业训练计划项目(202310304117Y);江苏省青年基金(BK20210834)
详细信息
    通讯作者:

    高晓红,硕士,教授,硕士生导师,研究方向为功能性纳米材料的制备、功能性纺织品开发、空气净化和印染废水治理研究E-mail: gao.xh@ntu.edu

  • 中图分类号: O611.62;TB332

Preparation and antibacterial properties of GO@P-g-C3N4 composite photocatalytic material

Funds: Jiangsu Province College Students' Innovation and Entrepreneurship Training Program (202310304117Y); Jiangsu Province Youth Found (BK20210834)
  • 摘要:

    通过静电自组装法制备了质子化石墨相氮化碳(P-g-C3N4)涂层的氧化石墨烯(GO)复合材料(GO@P-g-C3N4),探究其在光催化抗菌方面的应用。通过SEM、TEM、XRD、XPS、Raman、UV-Vis DRS、稳态/瞬态荧光光谱(PL)等对GO@P-g-C3N4复合材料的微观形貌、晶态结构及光电性能进行表征,并通过调控P-g-C3N4的含量对GO@P-g-C3N4复合材料进行了结构优化。在模拟太阳光照射条件下,以大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)为实验对象,研究了不同P-g-C3N4含量的GO@P-g-C3N4复合材料的光催化抗菌性能及光照时间对抗菌性能的影响。结果表明:GO与P-g-C3N4以质量比为1∶4合成的GO@P-g-C3N4-80%复合材料,光照100 min后,对E. coliS. aureus的抑菌率分别为98.80%和95.99%;光照150 min后,对E. coliS. aureus的抑菌率均达到99%以上,抗菌性能显著优于GO与P-g-C3N4

     

    Abstract:

    A protonated graphite carbon nitride (P-g-C3N4) coated graphene oxide (GO) composite material (GO@P-g-C3N4) was prepared via electrostatic self-assembly method, and its application in photocatalytic antibacterial activities was investigated. The micro morphologyies, crystalline structures, and photoelectric properties of the GO@P-g-C3N4 composite material were characterized by SEM, TEM, XRD, XPS, Raman, UV-Vis DRS and steady-state/transient fluorescence spectroscopy (PL), etc. The structure of GO@P-g-C3N4 composite material was optimized by adjusting the content of P-g-C3N4. Under simulated solar light irradiation conditions, E. coli and S. aureus were used as experimental targets to study the photocatalytic antibacterial performance of GO@P-g-C3N4 composites with different P-g-C3N4 contents and the influence of irradiation times on antibacterial performance. It was found that GO@P-g-C3N4-80% composite material synthesized with a mass ratio of 1∶4 between GO and P-g-C3N4 exhibited antibacterial rates against E. coli and S. aureus of 98.80% and 95.99%, respectively after 100 min of illumination. After 150 min of illumination, antibacterial rates against both E. coli and S. aureus exceeded 99%, demonstrating significantly better antibacterial performance compared to individual GO or P-g-C3N4.

     

  • 图  1   块状g-C3N4 (B-g-C3N4 ) (a)、质子化石墨相氮化碳(P-g-C3N4) (c)、氧化石墨烯(GO) (e)和 GO@P-g-C3N4 (g)的SEM图像;B-g-C3N4 (b)、P-g-C3N4 (d)、GO (f)和GO@P-g-C3N4 (h)的TEM图像;(i) GO@P-g-C3N4的EDX元素分布图

    Figure  1.   SEM images of block g-C3N4 (B-g-C3N4) (a), protonated graphite carbon nitride (P-g-C3N4) (c), graphene oxide (GO) (e) and GO@P-g-C3N4 (g); TEM images of B-g-C3N4 (b), P-g-C3N4 (d), GO (f) and GO@P-g-C3N4 (h); (i) EDX images of GO@P-g-C3N4

    图  2   GO、B-g-C3N4、P-g-C3N4和GO@P-g-C3N4的XRD图谱

    Figure  2.   XRD patterns of GO, B-g-C3N4, P-g-C3N4 and GO@P-g-C3N4

    图  3   (a) P-g-C3N4、GO和GO@P-g-C3N4的XPS全谱图;GO (b)和P-g-C3N4 (c)的O1s高分辨率XPS图谱;GO (d)、P-g-C3N4 (e)和GO@P-g-C3N4 (f)的C1s高分辨率XPS图谱;P-g-C3N4 (g)和GO@P-g-C3N4 (h)的N1s高分辨率XPS图谱;(i) B-g-C3N4、P-g-C3N4、GO和GO@P-g-C3N4的Raman图谱

    Figure  3.   (a) XPS survey spectra of P-g-C3N4, GO and GO@P-g-C3N4; High-resolution O1s XPS spectra of GO (b) and P-g-C3N4 (c); High-resolution C1s XPS spectra of GO (d), P-g-C3N4 (e) and GO@P-g-C3N4 (f); High-resolution N1s XPS spectra of P-g-C3N4 (g) and GO@P-g-C3N4 (h); (i) Raman spectra of B-g-C3N4, P-g-C3N4, GO and GO@P-g-C3N4

    图  4   P-g-C3N4和GO@P-g-C3N4的N2吸附-解吸等温线(a)及孔径分布图(b)

    Va—Quantity adsorbed; STP—Standard temperature and pressure; SBET—BET surface area; Vp—Pore volume; W—Pore size; VTotal—Single point adsorption total pore vlume of pores

    Figure  4.   N2 adsorption/desorption isotherms (a) and pore size distributions (b) of P-g-C3N4 and GO@P-g-C3N4

    图  5   P-g-C3N4和GO@P-g-C3N4的UV-Vis DRS (a)及对应的 Kubelka-Munk曲线(b)

    a—Absorption coefficient; h—Planck constant; v—Frequency

    Figure  5.   UV-Vis DRS (a) and corresponding Kubelka-Munk curves (b) of P-g-C3N4 and GO@P-g-C3N4

    图  6   P-g-C3N4和GO@P-g-C3N4的光致发光谱图

    Figure  6.   Photoluminescence spectra of P-g-C3N4 and GO@P-g-C3N4

    图  7   P-g-C3N4和GO@P-g-C3N4的光电流-时间曲线

    Figure  7.   Photocurrent-time curves of P-g-C3N4 and GO@P-g-C3N4

    图  8   对照组和不同光催化剂对E. coliS. aureus的光催化抑菌率

    Figure  8.   Photocatalytic inhibition rates of E. coli and S. aureus under control and different photocatalysts

    图  9   不同光催化剂作用下E. coliS. aureus菌落琼脂平板照片

    Figure  9.   Images of the agar plates of bacterial colonies formed by E. coli and S. aureus under different photocatalysts

    图  10   不同质量比GO@P-g-C3N4E. coliS. aureus的光催化抑菌率

    Figure  10.   Photocatalytic inhibition rates of E. coli and S. aureus for GO@P-g-C3N4 under different mass ratios

    图  11   不同质量比GO@P-g-C3N4作用下E. coliS. aureus菌落琼脂平板照片

    Figure  11.   Images of the agar plates of bacterial colonies formed by E. coli and S. aureus for GO@P-g-C3N4 under different mass ratios

    图  12   GO@P-g-C3N4-80%在不同光照时间下对E. coliS. aureus的光催化抑菌率

    Figure  12.   Photocatalytic inhibition rates of E. coli and S. aureus by GO@P-g-C3N4-80% after different irradiation times

    图  13   GO@P-g-C3N4-80%在不同光照时间下的E. coliS. aureus菌落琼脂平板照片

    Figure  13.   Images of the agar plates of bacterial colonies formed by E. coli and S. aureus in the presence of GO@P-g-C3N4-80% after different irradiation times

    图  14   GO@P-g-C3N4-80%在3次循环过程中对E. coliS. aureus的光催化抑菌率

    Figure  14.   Photocatalytic inhibition rates of E. coli and S. aureus by GO@P-g-C3N4-80% during the three cycles

    图  15   GO@P-g-C3N4-80%在3次循环过程中的E. coliS. aureus菌落琼脂平板照片

    Figure  15.   Images of the agar plates of bacterial colonies formed by E. coli and S. aureus in the presence of GO@P-g-C3N4-80% during the three cycles

    图  16   GO@P-g-C3N4-80%三次循环后的XRD图谱

    Figure  16.   XRD patterns of GO@P-g-C3N4-80% after third cycles

    图  17   S. aureus ((a)~(d))和E. coli ((a*)~(d*))在GO@P-g-C3N4-80%的催化下分别照射不同时间后的SEM图像

    Figure  17.   SEM images of S. aureus ((a)-(d)) and E. coli ((a*)-(d*)) after irradiation for different times under the catalysis of GO@P-g-C3N4-80%

    图  18   P-g-C3N4和GO@P-g-C3N4在黑暗条件下(a)和光照5 min后(b)的DMPO-O2 ESR谱;GO@P-g-C3N4在黑暗条件下和光照5 min后的DMPO-•OH ESR谱(c) 和TEMPO-e ESR谱(d)

    Figure  18.   ESR spectra of DMPO−O2 over P-g-C3N4 and GO@P-g-C3N4 under irradiation times of 0 min (a) and 5 min (b); ESR spectra of DMPO-•OH (c) and TEMPO-e (d) with GO@P-g-C3N4 under irradiation times of 0 min and 5 min

    图  19   GO@P-g-C3N4在可见光照射下的抗菌示意图

    Figure  19.   Schematic representation of the antibacterial properties of the GO@P-g-C3N4 under irradiation with visible light

    表  1   样品名称及制备过程氧化石墨烯(GO)与质子化石墨相氮化碳(P-g-C3N4)的质量比

    Table  1   Samples and the mass ratios of the preparation process graphene oxide (GO) to protonated graphite carbon nitride (P-g-C3N4)

    Sample GO ∶ P-g-C3N4
    GO@P-g-C3N4-70% 3 ∶ 7
    GO@P-g-C3N4-80% 1 ∶ 4
    GO@P-g-C3N4-90% 1 ∶ 9
    下载: 导出CSV
  • [1]

    DING H Y, HAN D L, HAN Y, et al. Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization[J]. Journal of Hazardous Materials, 2020, 393(5): 122423.

    [2] 张子琪, 孙彦东, 张雪, 等. 非金属掺杂的g-C3N4光催化材料制备及应用研究进展[J]. 材料工程, 2023, 51(12): 47-58.

    ZHANG Ziqi, SUN Yandong, ZHANG Xue, et al. Research progress in preparation and application of non-metal-doped g-C3N4 photocatalytic materials[J]. Journal of Materials Engineering, 2023, 51(12): 47-58(in Chinese).

    [3]

    YANG X T, YU Q J, WANG X M, et al. Progress in the application of spray-type antibacterial coatings for disinfection[J]. Trends in Food Science & Technology, 2023, 135: 131-143.

    [4]

    SHE P, LI S M, LI X J, et al. Photocatalytic antibacterial agents based on inorganic semiconductor nanomaterials: A review[J]. Nanoscale, 2024, 16(10): 4961-4973.

    [5] 陈媛媛, 唐晓宁, 崔帅, 等. 活性氧抗菌机理及其研究进展[J]. 工程科学学报, 2023, 45(6): 967-978.

    CHEN Yuanyuan, TANG Xiaoning, CUI Shuai, et al. Active oxygen antibacterial mechanism and its research progress[J]. Chinese Journal of Engineering, 2023, 45(6): 967-978(in Chinese).

    [6] 王鹏鸽, 张静, 王震宇, 等. 光催化反应中活性氧物种产生及抗菌机制研究[J]. 地球环境学报, 2023, 14(5): 539-556. DOI: 10.7515/JEE221022

    WANG Pengge, ZHANG Jing, WANG Zhenyu, et al. Generation and antimicrobial mechanisms of reactive oxygen species in photocatalysis[J]. Journal of Earth Environment, 2023, 14(5): 539-556(in Chinese). DOI: 10.7515/JEE221022

    [7] 严婉铒, 尚子茗, 袁庆科, 等. 固定化改性TiO2光催化消毒性能与机理研究[J]. 环境科学学报, 2023, 43(3): 162-174.

    YAN Wan'er, SHANG Ziming, YUAN Qingke, et al. Investigation of performance and mechanism of photocatalytic disinfection by immobilized modified TiO2[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 162-174(in Chinese).

    [8] 吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2023, 40(1): 323-333.

    WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333(in Chinese).

    [9] 宋婷婷, 栾静敏, 孙海峰, 等. 光催化抑菌和降解有机物的聚乙烯醇/二氧化钛@氮化碳复合纳米纤维膜[J]. 高分子材料科学与工程, 2023, 39(10): 129-140.

    SONG Tingting, LUAN Jingmin, SUN Haifeng, et al. Polyvinyl alcohol/titanium dioxide@carbon nitride composite nanofiber membrane with bacteriostasis and pollution degradation[J]. Polymer Materials Science & Engineering, 2023, 39(10): 129-140(in Chinese).

    [10] 牛凤延, 何齐升, 武世然, 等. 光沉积Pt复合石墨相氮化碳实现高效光催化产氢[J]. 复合材料学报, 2024, 41(1): 219-226.

    NIU Fengyan, HE Qisheng, WU Shiran, et al. Photodeposition Pt composite graphitic carbon nitride realizes efficient photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 219-226(in Chinese).

    [11]

    CHAVA R K, KANG M. Engineering morphology and nitrogen content on graphitic carbon nitrides for efficient solar to hydrogen conversion reaction[J]. Applied Surface Science, 2023, 635: 157742. DOI: 10.1016/j.apsusc.2023.157742

    [12] 刘源, 赵华, 李会鹏, 等. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77. DOI: 10.11868/j.issn.1001-4381.2021.000810

    LIU Yuan, ZHAO Hua, LI Huipeng, et al. Preparation of carbon-chlorine co-doped mesoporous g-C3N4 by bubble template method and photocatalytic performance[J]. Journal of Materials Engineering, 2022, 50(9): 70-77(in Chinese). DOI: 10.11868/j.issn.1001-4381.2021.000810

    [13] 郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2): 904-910.

    GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910(in Chinese).

    [14]

    SU Q, LI Y, HU R, et al. Heterojunction photocatalysts based on 2D materials: The role of configuration[J]. Advanced Sustainable Systems, 2020, 4(9): 2000130. DOI: 10.1002/adsu.202000130

    [15]

    ZHANG G R, LI X J, LI N, et al. Face-to-face heterojunctions within 2D/2D porous NiCo oxyphosphide/g-C3N4 towards efficient and stable photocatalytic H2 evolution[J]. Nano Research, 2023, 16: 6568-6576. DOI: 10.1007/s12274-022-5352-6

    [16]

    REN X T, GUO M S, XUE L L, et al. Photoelectrochemical performance and S-scheme mechanism of ternary GO/g-C3N4/TiO2 heterojunction photocatalyst for photocatalytic antibiosis and dye degradation under visible light[J]. Applied Surface Science, 2023, 630: 157446. DOI: 10.1016/j.apsusc.2023.157446

    [17] 刘洋洋, 易敏, 陈涛, 等. 石墨烯-有机物复合光催化材料及其应用[J]. 复合材料学报, 2023, 40(4): 1937-1950.

    LIU Yangyang, YI Min, CHEN Tao, et al. Applications of graphene-organic compound photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1937-1950(in Chinese).

    [18]

    XIE L, NI J, TANG B, et al. A self-assembled 2D/2D-type protonated carbon nitride-modified graphene oxide nanocomposite with improved photocatalytic activity[J]. Applied Surface Science, 2018, 434: 456-463. DOI: 10.1016/j.apsusc.2017.10.193

    [19] 张家晶, 郑永杰, 荆涛, 等. 3D花状MoS2/O-g-C3N4 Z型异质结增强光催化剂降解双酚A[J]. 复合材料学报, 2022, 39(12): 5778-5791.

    ZHANG Jiajing, ZHENG Yongjie, JING Tao, et al. 3D flower-shaped MoS2/O-g-C3N4 Z-type heterojunction enhances the photocatalyst degradation of bisphenol A[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5778-5791(in Chinese).

    [20] 李冬梅, 刘小勇, 黄毅, 等. AgI/GO/超薄g-C3N4异质结光催化剂的制备及其可见光催化特性研究[J]. 环境科学学报, 2022, 42(6): 90-100.

    LI Dongmei, LIU Xiaoyong, HUANG Yi, et al. The synthesis of ultrathin heterojunction photocatalyst AgI/GO/g-C3N4 and its photocatalytic performance[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 90-100(in Chinese).

    [21]

    PEI S, WEI Q, HUANG K, et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation[J]. Nature Communications, 2018, 9(1): 1-9. DOI: 10.1038/s41467-017-02088-w

    [22] 王淑勤, 李晓雪, 武金锦. TiO2/GO的制备及其室温可见光催化脱硝性能[J]. 燃料化学学报, 2022, 50(10): 1307-1315. DOI: 10.1016/S1872-5813(22)60025-2

    WANG Shuqin, LI Xiaoxue, WU Jinjin. Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1307-1315(in Chinese). DOI: 10.1016/S1872-5813(22)60025-2

    [23]

    NASIR M S, YANG G R, AYUB I, et al. ZIF-67 derived CoS x mediated 1D hollow carbon nitride for high photocatalytic hydrogen performance[J]. Materials Today Chemistry, 2024, 35: 101880. DOI: 10.1016/j.mtchem.2023.101880

    [24] 谭杰, 李志锋, 杨晓飞, 等. 球磨干湿环境对原位硫掺杂氮化碳可见光催化性能的影响[J]. 无机化学学报, 2020, 36(3): 475-484. DOI: 10.11862/CJIC.2020.052

    TAN Jie, LI Zhifeng, YANG Xiaofei, et al. Effect of dry and wet environment of ball milling on visible light catalytic performance of sulfur-doped carbon nitride[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(3): 475-484(in Chinese). DOI: 10.11862/CJIC.2020.052

    [25] 姜鹏程, 王周福, 王玺堂, 等. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053. DOI: 10.11896/cldb.20010111

    JIANG Pengcheng, WANG Zhoufu, WANG Xitang, et al. Synthesis of graphite-like carbon nitride in different atmospheres and its thermal stability[J]. Materials Reports, 2021, 35(6): 6048-6053(in Chinese). DOI: 10.11896/cldb.20010111

    [26]

    HOU Y S, ZHANG Y, XUE J, et al. Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification[J]. Chemical Engineering Journal, 2021, 420(P1): 129574.

    [27] 于晓慧, 苏海伟, 邹建平, 等. 利用掺杂诱导的金属-N 活性位点和带隙调控提升石墨相氮化碳的光催化产氢性能[J]. 催化学报, 2022, 43(2): 421-432. DOI: 10.1016/S1872-2067(21)63849-4

    YU Xiaohui, SU Haiwei, ZOU Jianping, et al. Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance[J]. Chinese Journal of Catalysis, 2022, 43(2): 421-432(in Chinese). DOI: 10.1016/S1872-2067(21)63849-4

    [28] 阎鑫, 卢锦花, 惠小艳, 等. g-C3N4/MoS2纳米片/氧化石墨烯三元复合催化剂的制备及可见光催化性能[J]. 无机材料学报, 2018, 33(5): 515-520. DOI: 10.15541/jim20170263

    YAN Xin, LU Jinhua, HUI Xiaoyan, et al. Preparation and visible light photocatalytic property of g-C3N4/MoS2 nanosheets/GO ternary composite photocatalyst[J]. Journal of Inorganic Materials, 2018, 33(5): 515-520(in Chinese). DOI: 10.15541/jim20170263

  • 其他相关附件

  • 目的 

    光催化抗菌是一种安全环保且高效的抗菌方式,为获得性能更加优异的光催化材料用于消杀细菌,以减少有害细菌导致的环境污染,本文利用带正电荷的质子化石墨相氮化碳(P-g-CN)与带负电荷的氧化石墨烯(GO)之间的静电吸引,成功制备了具有2D/2D异质结构的GO@P-g-CN复合材料,研究其光催化抗菌性能及抗菌机理。

    方法 

    通过静电自组装法制备了P-g-CN涂层的GO复合材料(GO@P-g-CN)。以尿素为原料,合成黄色块状g-CN(B-g-CN);对B-g-CN进行酸化处理和超声剥离,得到P-g-CN;将P-g-CN分散液逐滴添加到GO溶液中,搅拌生成絮状沉淀后,放至冷冻干燥机中,得到干燥的粉末即GO@P-g-CN复合材料。采用SEM、TEM、XRD、XPS、Raman、BET测试等对其进行形貌与结构的表征;通过紫外-可见漫反射光谱(UV-Vis DRS)、光致发光(PL)发射光谱、瞬时光电流响应测试分析其光学特性;通过抗菌实验和抗菌循环实验分析光催化剂的抗菌性和稳定性,结合光照不同时间段下和的SEM图以及电子顺磁共振波谱(ESR)表征对GO@P-g-CN光催化复合材料的光催化机制进行探究。

    结果 

    形貌与结构表征显示GO@P-g-CN复合材料的形貌兼顾了P-g-CN的二维薄层结构和GO的绸缎状,具有良好的2D/2D接触界面;GO@P-g-CN的XRD谱图中观察到GO在2θ=11.5°处的特征峰以及位于27.6°的尖锐和增强的强度峰表明结晶度增强,与P-g-CN相比,GO和P-g-CN复合后可能强化了层间结构,没有发现其他杂质峰,表明制备的催化剂纯度较高;XPS分析说明质子化对g-CN的基本构型影响不大,与GO结合后,没有新的化学键或官能团生成;Raman谱图表明GO@P-g-CN复合材料缺陷减少、有序度提高,电子容易传导;BET测试表明,加入GO后,P-g-CN与GO@P-g-CN峰值位置不变,复合材料的比表面积和孔体积增大,即GO加入后,孔隙未被堵塞。光电化学性质分析可知,由UV-Vis DRS图谱计算得到P-g-CN的带隙为2.76 eV,而GO@P-g-CN的带隙为2.63 eV;PL谱图证实了GO@P-g-CN峰强度明显低于P-g-CN,即GO@P-g-CN具有更高的载流子分离效率;瞬态光电流响应发现GO@P-g-CN的光电流密度高于P-g-CN,即GO的加入可以赋予复合材料高效的电子转移能力,可有效分离光生电子和空穴,增强了复合材料的光催化活性。对GO@P-g-CN复合材料进行光催化抗菌性能测试,光照150 min后,GO与P-g-CN对和的抑菌率分别为66.44%、95.17%和77.92%、87.39%,GO@P-g-CN对和的抑菌率均达到99%以上,明显优于GO与P-g-CN,三次循环后对和的抑菌率仍有95.53%和93.42%。ESR谱图分析证实了GO@P-g-CN在光催化过程中能产生·O和·OH、e,且与P-g-CN相比,GO的加入可以抑制电子空穴对的复合,使体系中更多O被电子还原生成·O,增强GO@P-g-CN复合材料的光催化活性,使和在活性自由基的作用下,细胞膜破裂,导致细菌死亡。

    结论 

    通过静电自组装法制备的具有2D/2D异质结构的 GO@P-g-CN复合材料,具有高效的电子转移能力,可有效分离光生电子和空穴,从而增强了复合材料的光催化活性。光催化抗菌实验表明,光照150 min后,对和的抑菌率均达到99%以上,3次循环后抑菌率仍有95.53%和93.42%,循环后复合材料晶体结构没有明显变化,具有良好的性能稳定性和结构稳定性。

  • 石墨相氮化碳光催化材料,由碳和氮以sp2杂化形成π共轭平面,具有类似石墨的结构和三-s-三嗪构造单元,带隙(约2.7 eV)较窄,具有低成本、稳定性好、生态友好等优点,在光催化降解有机污染物、抗菌、光催化产氢等领域得到了广泛应用。但是g-C3N4对可见光吸收率低、光生e/h+对易快速重组,单独使用g-C3N4表现出的光催化效率并不理想,限制了其发展应用。

    本文首先对石墨相氮化碳质子化处理,通过静电自组装法与带负电的氧化石墨烯复合,成功制备了具有2D/2D异质结构的GO@P-g-C3N4复合材料。P-g-C3N4的质子化增加了活性表面积和光生e/h+对产率,加入GO冻干处理后,GO@P-g-C3N4复合材料保留了大量羟基/羧基,不仅增大了复合材料的比表面积(87.5 m2/g)和孔体积(0.676 m3/g),使细菌与光催化剂接触面积增加,而且降低了GO表面氧的吸附能,从而产生更强的氧自由基。光电性能测试分析表明,GO@P-g-C3N4复合材料对可见光的吸收范围拓宽,载流子密度增大,光生电子空穴对的复合率降低,GO@P-g-C3N4复合材料的光催化活性有效提高。光催化抗菌实验表明,GO与P-g-C3N4以质量比为1∶4合成的GO@P-g-C3N4-80%复合材料,光照100 min后,对E. coliS. aureus的抑菌率分别为98.80%和95.99%;光照150 min后,对E. coliS. aureus的抑菌率均达到99%以上。

    (a) 对照组和不同光催化剂对E. coliS. aureus的抑菌率(光照150 min)和(b) GO@P-g-C3N4-80%在不同光照时间下对E. coliS. aureus的抑菌率

图(19)  /  表(1)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  124
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-05-05
  • 录用日期:  2024-05-10
  • 网络出版日期:  2024-05-30
  • 发布日期:  2024-05-10
  • 刊出日期:  2024-11-26

目录

    /

    返回文章
    返回