全有机三明治结构PI-ANFm-PI薄膜的制备及其介电性能

Preparation of All-Organic Sandwich-Structured PI-ANFm-PI films and Their Dielectric Properties

  • 摘要: 为了打破聚合物电介质材料介电常数和击穿强度间的内禀矛盾关系,优化其在高温、强电场环境中的介电性能和击穿强度。本研究采用浸渍提拉法,基于聚酰亚胺(polyimide, PI)溶液和芳纶纳米纤维薄膜(aramid nanofiber film, ANFm)构筑了具有三明治结构的全有机PI-ANFm-PI (P-A-P)复合电介质薄膜。ANFm表面粗糙度的降低以及P-A-P复合薄膜内部电子-空穴对的构建有效抑制了漏电流的形成。当PI溶液浓度为7 wt%时,P-A-P复合薄膜在25 ℃和150 ℃下的击穿强度分别达411.6 MV/m和350.7 MV/m,较ANFm分别提升了58.4%和44.7%;此外,由于空间电荷极化强度的降低,P-A-P复合薄膜的介电稳定性和绝缘性能明显改善。上述研究结果表明,在ANFm表面形成高绝缘层有助于改善ANFm的击穿强度以及降低其内部漏电流密度,有望为开发新型全有机高温电介质薄膜提供新方法和新思路。

     

    Abstract: For breaking the endowed paradox between dielectric constant and breakdown strength of polymer dielectric films and optimizing the dielectric properties and breakdown strength at high temperatures under electric field. polyimide (PI) solution and aramid nanofiber film (ANFm) were utilized to construct all-organic sandwich-structured PI-ANF-PI (P-A-P) dielectric films via “dipping and pulling” process. Due to the top and bottom PI layers reduced the surface roughness of ANFm as well as the formation of electron-hole pairs, the leakage current density of the P-A-P film was effectively suppressed. When the concentration of PI solution was 7 wt%, the breakdown strength of P-A-P-7 film reached 411.6 MV/m and 350.7 MV/m at 25℃ and 150℃, respectively, which was 58.4% and 44.7% higher than that of single-layer ANFm. Moreover, on account of the reduction of space-charge polarization, the dielectric stability and insulating performance of P-A-P film significantly improved. The obtained results demonstrate that the insulating layers on both surfaces of ANFm contribute to improving the breakdown strength and decreasing the leakage current density. Hence, this work provides a novel approach and a new idea for the development of all-organic high-temperature dielectric films.

     

/

返回文章
返回