发泡聚合物复合材料吸波性能的研究进展

Research Progress on the Microwave Absorption Properties of Foamed Polymer Composites

  • 摘要: 本文综述了发泡聚合物复合材料在电磁波吸收领域的最新研究进展,重点围绕电磁波吸收基本原理及不同填料型复合发泡聚合物材料的吸波性能展开系统阐述。在碳系 / 发泡聚合物材料方向,详细介绍了碳纤维(CF)、碳纳米管(CNTs)及石墨烯纳米片(GnP)与聚合物的复合发泡体系,这类碳系填料凭借优异的高导电性、低密度特性及良好的界面相容性,有效强化了复合材料的电磁波损耗能力。在陶瓷/聚合物发泡材料领域,概述了碳化硅(SiC)、四氧化三铁(Fe3O4)等陶瓷填料在发泡聚合物基体中的吸波应用表现,该类复合材料即便在高温、腐蚀等苛刻服役环境下,仍能维持稳定的吸波效能。本文通过调控复合材料的泡孔结构,一方面借助发泡技术实现材料轻量化设计,另一方面利用形成的多孔界面优化电磁波阻抗匹配效应并促进多重散射,进而协同提升材料的综合吸波性能。该研究策略为开发下一代轻质、宽频、高效电磁波吸收材料提供了全新思路与技术参考。但现阶段研究仍存在关键瓶颈。实现三维泡孔结构的精准调控以达成阻抗匹配与损耗机制的最佳协同,以及在维持材料低密度优势的前提下兼顾其结构稳定性与力学性能,是该领域未来需重点探索的核心研究方向。

     

    Abstract: This review summarizes the latest research progress in foamed polymer composites for electromagnetic wave absorption, with a systematic focus on the fundamental principles of electromagnetic wave absorption and the wave-absorbing performance of composite foams incorporating different types of fillers. In the domain of carbon-based/polymer foams, a detailed introduction is provided for composite foaming systems combining polymers with carbon fibers (CF), carbon nanotubes (CNTs), and graphene nanoplatelets (GnP). These carbon-based fillers effectively enhance the electromagnetic wave loss capability of the composites owing to their excellent high conductivity, low density, and favorable interfacial compatibility. In the field of ceramic/polymer foams, the wave-absorbing performance of ceramic fillers such as silicon carbide (SiC) and ferrous-ferric oxide (Fe3O4) within foamed polymer matrices is outlined. These composites can maintain stable wave-absorbing efficiency even under harsh service conditions, including high temperatures and corrosive environments. By tailoring the pore structure of the composites, this work aims to leverage foaming technology for lightweight material design while utilizing the resulting porous interfaces to optimize electromagnetic impedance matching and promote multiple scattering, thereby synergistically improving the overall wave-absorbing performance. This research strategy provides novel insights and technical references for developing next-generation lightweight, broadband, and high-efficiency electromagnetic wave-absorbing materials. However, key bottlenecks remain in current research. Achieving precise control over the three-dimensional pore structure to realize optimal synergy between impedance matching and loss mechanisms, as well as balancing structural stability and mechanical properties while preserving the material's low-density advantage, represent core research directions requiring focused exploration in the future.

     

/

返回文章
返回