氮掺杂碳基限域Fe/Cu双活性位点:协同催化强化Li-CO2电池反应动力学

Nitrogen-doped carbon-based confined Fe/Cu dual active sites: Synergistic catalytic enhancement of Li-CO2 battery reaction kinetics

  • 摘要: 本文通过NaCl盐模板法与多段热解工艺,结合葡萄糖辅助策略,制备了褶皱层状形貌和丰富介-微孔结构的Fe/Cu双金属氮掺杂碳阴极催化剂(FeCuCN)。该材料构建了高密度金属–Nx活性位点与缺陷结构,显著提升电子传输与中间体吸附能力。电化学结果表明,FeCuCN在低电流密度下实现高比容量,在高倍率下仍保持优异输出,并在长循环中展现超过千小时的稳定性。放电产物表征证实Li2CO3及碳质副产物可逆生成/分解,其中纳米短棒状Li2CO3具备更优界面结合,有效降低充电过电位。机理分析揭示,Fe/Cu双金属协同作用于氮掺杂碳基底构建了高效电子网络,结合多级孔结构促进CO2扩散与产物存储,从而实现CO2还原/析出的高效可逆性,为高性能Li-CO2电池催化剂的理性设计提供了新思路。

     

    Abstract: In this work, a Fe/Cu bimetallic nitrogen-doped carbon cathode catalyst (FeCuCN) featuring a wrinkled layered morphology and abundant meso-microporous structures was synthesized via a NaCl salt-template method combined with a multi-step pyrolysis process and a glucose-assisted strategy. This material exhibits high-density metal–Nx active sites and defect structures, significantly enhancing electronic transport and intermediate adsorption.. Electrochemical results showed that FeCuCN deliversed a high specific capacity at a low current density, maintained an excellent output performance at high rates and achieved long-term cycling stability exceeding 1000 hours.. Product characterization confirms the reversible formation/decomposition of Li2CO3 and carbonaceous. Among these, the nano-short rod-shaped Li2CO3 had better interface bonding, which effectively reduced the charge overpotential. Mechanism analysis revealed that the Fe/Cu bimetallic synergistic effect combined with the nitrogen-doped carbon substrate constructs an efficient electron-transport network while the hierarchical porous architecture promotes CO2 diffusion and product storage. These combined effects enable high reversibility in CO2 reduction/evolution, providing new insights for the rational design of high-performance Li-CO2 battery catalysts.

     

/

返回文章
返回