Zn2+/GaOOH纳米线的制备、表征与荧光性能

田俐, 李岩, 吴杰灵, 刘强, 易益涛, 陈丽娟

田俐, 李岩, 吴杰灵, 等. Zn2+/GaOOH纳米线的制备、表征与荧光性能[J]. 复合材料学报, 2022, 39(7): 3347-3355. DOI: 10.13801/j.cnki.fhclxb.20210818.001
引用本文: 田俐, 李岩, 吴杰灵, 等. Zn2+/GaOOH纳米线的制备、表征与荧光性能[J]. 复合材料学报, 2022, 39(7): 3347-3355. DOI: 10.13801/j.cnki.fhclxb.20210818.001
TIAN Li, LI Yan, WU Jieling, et al. Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3347-3355. DOI: 10.13801/j.cnki.fhclxb.20210818.001
Citation: TIAN Li, LI Yan, WU Jieling, et al. Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3347-3355. DOI: 10.13801/j.cnki.fhclxb.20210818.001

Zn2+/GaOOH纳米线的制备、表征与荧光性能

基金项目: 国家自然科学基金(51202066);教育部新世纪优秀人才支持计划项目(NCET-13-0784);湖南科技大学大学生科研创新计划(SRIP)项目(YZ2064)
详细信息
    通讯作者:

    田俐,博士,教授,博士生导师,研究方向为纳米光电材料 E-mail:849050031@qq.com

  • 中图分类号: TB383.1

Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires

  • 摘要: 羟基氧化镓(GaOOH)是一类宽带隙的半导体材料,在光催化降解有机染料、甲醇燃料电池、锂离子电池和生物光学成像方面有着潜在的应用前景。本研究以乙二胺四乙酸二钠(Na2Y)为模板剂,选取醋酸锌和硝酸镓为反应源,在简便易操作的水热条件下制备了Zn2+/GaOOH纳米线。采用XRD、SEM、HRTEM、EDS对材料进行了物相、成分、形貌与微结构表征。所制备的Zn2+/GaOOH纳米线长度达数十微米、直径约为100 nm,粗细均匀;Zn2+/GaOOH晶体呈现单晶的特性,纳米线沿<110>晶向生长。反应源及其摩尔量强烈地影响着产物的物相和形貌。当控制硝酸镓为1.5 mmol不变,Zn(Ac)2为1.0 mmol,Na2Y为0.5 mmol时,生成ZnGa2O4;Na2Y为1.0~1.7 mmol时,生成Zn2+/GaOOH纳米线。改变Zn(Ac)2为2.0 mmol,当Na2Y 为1.5 mmol时,得到尖晶石型结构的ZnGa2O4。详细探究了Zn∶Ga∶Y摩尔量比例影响产物的物相和形貌的规律,结果显示当控制Zn∶Ga∶Y=2∶3∶3时,可以得到相纯均一的Zn2+/GaOOH纳米线。荧光测试表明,紫外光照射Zn2+/GaOOH纳米线,在蓝绿光区域的469 nm 波长处有很强的发射峰,归因于阴离子空位缺陷激发重组后的发射。随着激发波长蓝移,其发射峰强度增加,214 nm时强度最大。相对于ZnGa2O4纳米颗粒而言,在226 nm激发波长下,Zn2+/GaOOH纳米线在469 nm 波长处有更高的发射峰强度,Zn2+/GaOOH纳米线比ZnGa2O4纳米颗粒具有更好的荧光性能。
    Abstract: Gallium oxide hydroxide (GaOOH) is a kind of semiconductor material with broad-band gap and has extensive potential applications in the fields such as photocatalytic degradation of organic dyes, direct methanol fuel cell, lithium ion battery, bioluminescent imaging and so on. In our study, Zn2+/GaOOH nanowires have been synthesized via a facile and controllable hydrothermal method with zinc acetate and gallium nitrate as reactants and ethylenediaminetetraacetic acid disodium salt (Na2Y) as template. The products were characterized by XRD、SEM、HRTEM and EDS techniques. The length of the as-prepared uniform Zn2+/GaOOH nanowires is up to several micrometers and the diameter is about 100 nm. Zn2+/GaOOH is single crystalline and grew along crystalline direction <110>. The phase and morphology of Zn2+/GaOOH are affected by reactants and their amounts. Keeping the reactant amount of 1.5 mmol gallium nitrate stand, Zn2+/GaOOH nanowires form with 1.0 mmol zinc acetate and 1.0-1.7 mmol Na2Y, while spinel ZnGa2O4 nanoparticles obtain with 0.5 mmol Na2Y. When the reactant amount of zinc acetate is changed to 2.0 mmol, only spinel ZnGa2O4 nanoparticles can be obtained with the reactant amount of 1.5 mmol gallium nitrate. The detail of the effects of the products by Zn∶Ga∶Y mole ratios on the phase and morphology was studied, showing the forming condition of phase-pure and uniform Zn2+/GaOOH nanowires with the Zn∶Ga∶Y mole ratio of 2∶3∶3. The result of photoluminescence determination shows that Zn2+/GaOOH nanowires exhibit strong PL emission in the blue-green wavelength range, attribute to the recombination of the defect-related excitations through an excitation-excitation collision process. The strongest PL emission is at 469 nm with the excitaton of 214 nm. The intensity of the emission peak at 469 nm rises with the blue-transiton of excitation wavelength. Zn2+/GaOOH nanowires show higher intensity of the emission peak at 469 nm by the excitation wavelength of 226 nm, accompany with ZnGa2O4 nanoparticles, indicating more excellent photoluminescence performance.
  • 图  1   α-GaOOH的XRD图谱(a)和标准卡片(b)

    Figure  1.   XRD patterns of the α-GaOOH product (a) and standard card (b)

    图  2   Zn2+/GaOOH的EDS图谱

    Figure  2.   EDS spectrum of Zn2+/GaOOH

    图  3   Zn2+/GaOOH纳米线不同放大倍数的SEM图像:(a) 2000 倍;(b) 5000 倍;(c) 10000 倍;(d) 20000倍

    Figure  3.   SEM images of Zn2+/GaOOH nanowires with different magnification: (a) 2 000 times; (b) 5000 times; (c) 10000 times; (d) 20000 times

    图  4   Zn2+/GaOOH纳米线的TEM图像,显示了Zn2+/GaOOH单晶的特性和生长方向:(a)低倍;(b)单根Zn2+/GaOOH纳米线;(c)高倍放大的单根Zn2+/GaOOH纳米线;(d) HRTEM

    Figure  4.   TEM images of Zn2+/GaOOH nanowires, showing single crystalline character and growth orientation of the Zn2+/GaOOH nanowires:(a) Low-magnification; (b) Single Zn2+/GaOOH nanowire; (c) Higher-magnification Zn2+/GaOOH nanowire; (d) HRTEM

    图  5   Zn2+/GaOOH纳米线的FTIR图谱

    Figure  5.   FTIR spectrum of Zn2+/GaOOH nanowires

    图  6   反应体系中加入不同摩尔量的Zn(Ac)2所制得Zn2+/GaOOH的XRD图谱

    Figure  6.   XRD patterns of Zn2+/GaOOH prepared with different contents of Zn(Ac)2

    图  7   加入不同摩尔量的反应源Zn(Ac)2所制得Zn2+/GaOOH的SEM图像:(a) 0.8 mmol;(b) 2.0 mmol

    Figure  7.   SEM images of Zn2+/GaOOH obtained at different molar amounts of Zn(Ac)2: (a) 0.8 mmol; (b) 2.0 mmol

    图  8   反应体系中加入不同摩尔量的Na2Y所制备的Zn2+/GaOOH的XRD图谱

    Figure  8.   XRD patterns of Zn2+/GaOOH prepared with different contents of Na2Y

    图  9   反应体系中加入不同摩尔量的Na2Y所制得Zn2+/GaOOH的SEM图像:(a) 0.5 mmol;(b) 1.0 mmol;(c) 1.2 mmol;(d) 1.7 mmol

    Figure  9.   SEM images of Zn2+/GaOOH prepared with different contents of Na2Y: (a) 0.5 mmol;(b) 1.0 mmol;(c) 1.2 mmol;(d) 1.7 mmol

    图  10   反应源摩尔比对 Zn2+/GaOOH纳米线形貌和物相的影响

    Figure  10.   Effects of reactants mole ratios on the phase and morphology of Zn2+/GaOOH nanowires

    图  11   Zn2+/GaOOH在不同激发波长下的荧光发射图谱

    Figure  11.   Fluorescence emission spectra of Zn2+/GaOOH nanowires at different excitation wavelengths

    图  12   Zn2+/GaOOH (a)和ZnGa2O4 (b)的荧光发射图谱

    Figure  12.   Fluorescence emission spectra of Zn2+/GaOOH (a) and ZnGa2O4 (b)

  • [1]

    HUANG M H, WU Y Y, FERCK H, et al. Catalytic growth of zinc oxide nanowiresby vapor transport[J]. Advanced Materials,2001,13(2):113-116. DOI: 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H

    [2]

    TIAN L, CHEN L. Liquid-phase preparation and electrochemical property of LiFePO4/C nanowires[J]. Journal of Central South University. 2014, 21: 477-481.

    [3] 辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4):251-261.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self- supported graphene composite with excellent cycling stability[J]. Acta Materiae Composi-tae Sinica,2021,38(4):251-261(in Chinese).

    [4]

    TIAN L, SUN Q L, XU X J, et al. Controlled synthesis and formation mechanism of monodispersive lanthanum vanadate nanowires with monoclinic structure[J]. Journal of Solid State Chemistry,2013,200:123-127. DOI: 10.1016/j.jssc.2013.01.039

    [5]

    XU L, SU Y, ZHOU Q, et al. Self-assembled catalyst growth and optical properties of single-crystalline ZnGa2O4 nanowires[J]. Crystal Growth & Design. 2007, 7(4): 810-814.

    [6]

    KIM H S, HWANG S O, MYUNG Y, et al. Three-dimensional structure of helical and zigzagged nanowires using electron tomography[J]. Nano Letters,2008,8(2):551-557. DOI: 10.1021/nl072829i

    [7]

    ADAMS T W, VINUEZA N R, ROMANYUK O, et al. Nanostructured GaOOH modifified with reactive yellow, red and blue water-soluble dyes[J]. AIP Advances,2019,9:025005. DOI: 10.1063/1.5080353

    [8]

    MURUGANANDHAM M, SURI R, SILLANPA M, et al. Catalytic activity evaluation of mesoporous α-GaOOH microspheres self-assembly[J]. Journal of Industrial and Engi-neering Chemistry,2015,26:348-353. DOI: 10.1016/j.jiec.2014.12.008

    [9]

    HUANG P Q, LUAN J F. Structure and photocatalytic performance of rice husk-like Ba-doped GaOOH under light irradiation [J]. RSC Advances, 2019, 9: 19930-19939.

    [10]

    MURUGANANDHAM M, SURI R, ABDEL WAHED M S M, et al. Solvothermal synthesis of mesoporous α-GaOOH semi-nanospheres[J]. Materials Letters,2013,111:137-139. DOI: 10.1016/j.matlet.2013.08.071

    [11]

    CHEN K, HE C, GUO D, et al. Low-voltage-worked photodetector based on Cu2O/GaOOH shell-core heterojunction nanorod arrays[J]. Journal of Alloys and Compounds,2018,755:199-205. DOI: 10.1016/j.jallcom.2018.04.219

    [12]

    LIANG H F, MENG F, LAMB B K, et al. Solution growth of screw dislocation driven α-GaOOH nanorod arrays and their conversion to porous ZnGa2O4 nanotubes [J]. Chemi-cal Materials, 2017, 29: 7278-7287.

    [13]

    HSU Y H, NGUYEN A T, CHIU Y H, et al. Au-decorated GaOOH nanorods enhanced the performance of directmethanol fuel cells under light illumination[J]. Applied Catalysis B: Environmental,2016,185:133-140. DOI: 10.1016/j.apcatb.2015.11.049

    [14]

    FENG J J, FU B, FANG L, et al. Uniform gallium oxyhydro-xide nanorod anodes with superior lithium-ion storage[J]. RSC Advances,2019,9:34896-34901. DOI: 10.1039/C9RA07064H

    [15]

    ZHENG Y N, FAN M, LI K, et al. Ultraviolet-induced Ostwald ripening strategy towards a mesoporous Ga2O3/GaOOH heterojunction composite with a controllable structure for enhanced photocatalytic hydrogen evolution[J]. Catalysis Science & Technology,2020,10:2882-2892.

    [16]

    PRAKASAM B, LAHTINEN M, MURUGANANDHAM M, et al. Synthesis of self-assembled α-GaOOH microrods and 3D hierarchical architectures with flower like morphology and their conversion to α-Ga2O3[J]. Materials Letters,2015,158:370-372. DOI: 10.1016/j.matlet.2015.05.044

    [17]

    LERTANANTAWONG B, RICHES J D, MULLANE A P O. Room temperature electrochemical synthesis of crystalline GaOOH nanoparticles from expanding liquid metals[J]. Langmuir, 2018, 34(26): 7604-7611.

    [18]

    XU X, BI K, HUANG K, et al. Controlled fabrication of α-GaOOH with a novel needle-like submicrontubular structure and its enhanced photocatalytic performance[J]. Journal of Alloys and Compounds,2015,644:485-490. DOI: 10.1016/j.jallcom.2015.03.088

    [19]

    SHI L, ZHANG J, WU S, et al. Phase evolution of Ga2O3 produced from morphology-controllable α-GaOOH nanocrystals [J]. Journal of the American Ceramic Society, 2014, 97(8): 2607-2614.

    [20]

    SUN M, LI D Z, ZHANG W J, et al. Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds[J]. Nanotechnology,2010,21(35):355601. DOI: 10.1088/0957-4484/21/35/355601

    [21]

    KREHULA S, RISTIC M, KUBUKI S, et al. The formation and microstructural properties of uniform α-GaOOH particles and their calcination products[J]. Journal of Alloys and Compounds,2015,620:217-227. DOI: 10.1016/j.jallcom.2014.09.134

    [22]

    TIAN L, LI Y, WANG H F, et al. Controlled preparation and self-assembly of NdVO4 nanocrystals[J]. Journal of Rare Earths,2018,36:179-183. DOI: 10.1016/j.jre.2017.04.010

    [23]

    TIAN L, CHENS M, LIU Q, et al. Effect of Eu3+-doping on morphology and fluorescent properties of neodymium vanadate nanorod-arrays[J]. Transactions Nonferrous Metals Society of China,2020,30:1031-1037. DOI: 10.1016/S1003-6326(20)65274-8

    [24] 田俐, 刘强, 李岩. 一种GaOOH, Zn2+一维纳米材料的制备方法: 中国专利, ZL 201910233072.3[P]. 2021-02-02.

    TIAN Li, LIU Qiang, LI Yan. A preparation method of a one-dimension nanomaterials GaOOH, Zn2+: Chinese patent, ZL 201910233072.3[P]. 2021-02-02 (in Chinese).

    [25]

    WU S, ZHANG J, SHI L, et al. Template-free synthesis of α-GaOOH hyperbranched nanoarchitectures via crystal splitting and their optical properties[J]. RSC Advances,2014,4:8209-8215. DOI: 10.1039/c3ra46931j

    [26]

    PEI L Z, QUAN Y, FANG D, et al. Synthesis and characterization of gallium oxide nanowires via a hydrothermal me-thod[J]. Materials Chemistry and Physics,2010,121(1-2):142-146. DOI: 10.1016/j.matchemphys.2010.01.009

    [27] 梁建, 王晓斌, 张艳, 等. GaOOH和Ga2O3的制备及光学性能研究[J]. 人工晶体学报, 2013, 42(5):804-814. DOI: 10.3969/j.issn.1000-985X.2013.05.006

    LIANG Jian, WANG Xiaobin, ZHANG Yan, et al. Synthesis and optical properties of GaOOH and Ga2O3[J]. Journal of Synthetic Crystals,2013,42(5):804-814(in Chinese). DOI: 10.3969/j.issn.1000-985X.2013.05.006

  • 期刊类型引用(2)

    1. 柯俊,李志虎,秦玉林. 金属主簧-复合材料副簧复合刚度计算模型. 汽车实用技术. 2021(05): 39-43 . 百度学术
    2. 曾婷,王咏莉,尹忠旺,苏婷慧,师志峰,饶猛. 端面凸轮下压机构支承轴承冲击失效分析及优化(英文). 机床与液压. 2017(24): 37-42 . 百度学术

    其他类型引用(5)

图(12)
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  586
  • PDF下载量:  88
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-06-06
  • 修回日期:  2021-07-17
  • 录用日期:  2021-07-30
  • 网络出版日期:  2021-08-17
  • 刊出日期:  2022-07-29

目录

    /

    返回文章
    返回