SiO2气凝胶/陶瓷纤维复合材料制备及数值模拟

Preparation and numerical simulation of SiO2 aerogel/ceramic fiber composite

  • 摘要: 本研究针对冶金工业节能减排和固废高值化利用的双重需求,制备了SiO2气凝胶/陶瓷纤维复合材料。通过实验制备与多尺度表征,分析了复合材料的结构、力学性能、热稳定性及导热性能。实验数据表明:经SiO2气凝胶复合改性后,材料的比表面积提升至244.083 m2·g−1,导热系数降低至0.0249 W·m−1·K−1,同时抗压强度实现20倍显著提升,展现出优异的性能。基于COMSOL Multiphysics有限元分析软件建立的传热数值模型进一步揭示了材料内部的传热机制。模拟结果表明:材料的最佳厚度为12 mm,且孔径分布的随机性(Cv值)对热传导效率有显著影响。该研究不仅提升了陶瓷纤维毡的隔热和力学性能,还建立了工业固废-高性能隔热材料的转化新方法,对推动气凝胶材料在建筑保温、航空航天等领域的应用具有重要意义。

     

    Abstract: To address the dual challenges of energy conservation in metallurgical industries and high-value utilization of solid wastes, this study developed SiO2 aerogel/ceramic fiber composite materials. Through experimental synthesis and multi-scale characterization, the structural attributes, mechanical properties, thermal stability, and thermal conductivity of the composites were systematically investigated. Key findings demonstrate substantial performance enhancements: the modified material achieved a specific surface area of 244.083 m2·g−1 and a reduced thermal conductivity coefficient of 0.02230 W·m−1·K−1, while exhibiting an 20-fold improvement in compressive strength. A numerical heat transfer model constructed using COMSOL Multiphysics finite element analysis software elucidated the material's internal thermal transfer mechanisms, revealing optimal thickness at 12 mm and significant influence of pore size distribution randomness (Cv value) on thermal conduction efficiency. This research not only enhances the thermal insulation and mechanical performance of ceramic fiber felts but also establishes a novel methodology for converting industrial solid wastes into high-performance insulating materials. The outcomes hold substantial implications for advancing aerogel material applications in building insulation and aerospace thermal protection systems.

     

/

返回文章
返回