留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位成纤复合泡沫材料的研究进展

孙俊威 蒋晶 赵娜 王小峰 段同生 李倩

孙俊威, 蒋晶, 赵娜, 等. 原位成纤复合泡沫材料的研究进展[J]. 复合材料学报, 2023, 40(4): 1951-1965. doi: 10.13801/j.cnki.fhclxb.20220704.001
引用本文: 孙俊威, 蒋晶, 赵娜, 等. 原位成纤复合泡沫材料的研究进展[J]. 复合材料学报, 2023, 40(4): 1951-1965. doi: 10.13801/j.cnki.fhclxb.20220704.001
SUN Junwei, JIANG Jing, ZHAO Na, et al. Research progress of in-situ fibrous composite foamed material[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1951-1965. doi: 10.13801/j.cnki.fhclxb.20220704.001
Citation: SUN Junwei, JIANG Jing, ZHAO Na, et al. Research progress of in-situ fibrous composite foamed material[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1951-1965. doi: 10.13801/j.cnki.fhclxb.20220704.001

原位成纤复合泡沫材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20220704.001
基金项目: 国家自然科学基金(U1909219)
详细信息
    通讯作者:

    蒋晶,博士,副教授,硕士生导师,研究方向为高分子复合材料发泡 E-mail: jiangjing@zzu.edu.cn

  • 中图分类号: TB322

Research progress of in-situ fibrous composite foamed material

Funds: National Natural Science Foundation of China (U1909219)
  • 摘要: 原位成纤复合泡沫材料是针对原位微纤化(In-situ micro fibrillation,IMF)复合材料,基于微孔发泡工艺制备的一种泡沫材料。除了具有传统泡沫材料质轻、减震、隔热、降噪等性能外,IMF复合材料内部纤维网络结构的存在显著改善了基体的微孔发泡行为,使得原位成纤复合发泡材料成为一种兼具高强度和功能化的新型泡沫材料。首先概述了IMF复合材料的制备工艺及IMF工艺过程调控因素,重点分析了IMF网络结构对复合材料结晶和流变行为的影响,其次综述了针对不同IMF复合材料体系和微孔发泡工艺的原位成纤复合泡沫材料的制备方法和泡孔结构调控手段,阐述并列举了其力学性能强韧化机制和在隔热和油水分离领域的应用,最后展望了原位成纤复合泡沫材料未来的研究方向。

     

  • 图  1  原位成纤(IMF)工艺过程[13]

    Figure  1.  Processing scheme of in-situ microfibrillation (IMF) process[13]

    图  2  IMF复合泡沫材料制备工艺示意图

    Figure  2.  Schematic illustration of IMF foam fabrication

    图  3  IMF过程对基体晶型的影响:(a) 横晶[44];(b) Shish-Kebab晶体[45];(c) γ晶[46]

    Figure  3.  Influence of IMF process on crystalline form of matrix: (a) Transverse crystal[44]; (b) Shish-Kebab crystal structure[45]; (c) γ crystal[46]

    A, B, C—Inside the images represent the shish of iPP, the kebab of iPP induced by iPP Shish, and the Kebab of iPP induced by PET microfibers, respectively; PET—Polyethylene terephthalate; PP—Polypropylene

    图  4  (a) 聚己内酯(PCL)/聚乳酸(PLA)共混物的储能模量-频率曲线;(b) PCL/PLA IMF复合物的储能模量-频率曲线[60];(c) PP/PET共混物与PP/PET IMF复合物的单轴拉伸-黏度曲线;(d) PP/PET IMF复合材料的拉伸应变硬化系数[46]

    Figure  4.  (a) Storage modulus-frequency curves of polycaprolactone (PCL)/polylactic acid (PLA) blends; (b) Storage modulus-frequency curves of PCL/PLA IMF compound[60]; (c) Curves of uniaxial extensional viscosity of PP/spherical-PET and PP/fibrillated-PET blends;(d) Strain hardening factor[46]

    ηE(t, ε)—Uniaxial extensional viscosity; 3η+—The 3-fold linear viscoelasticity; F—Nanofibrillar; S—Spherical

    图  5  PBT/PTFE复合泡沫的SEM形貌图与泡孔参数:(a) PBT/PTFE-0(phr);(b) PBT/PTFE-0.25(phr);(c) PBT/PTFE-0.5(phr);(d) 平均泡孔尺寸和密度;(e) 发泡倍率[67]

    Figure  5.  SEM images and parameters of PBT/PTFE composite foams: (a) PBT/PTFE-0(phr); (b) PBT/PTFE-0.25(phr); (c) PBT/PTFE-0.5(phr); (d) Average cell size and cell density; (e) Expansion ratio[67]

    图  6  PCL/PLA微纤化复合泡沫材料开孔示意图[60]

    Figure  6.  Cell opening mechanism for PCL/PLA composites foams[60]

    图  7  PP/PTFE原位成纤复合物泡沫的拉伸性能:(a) 应力-应变曲线;(b) 屈服强度、模量和拉伸韧性[6]

    Figure  7.  Tensile properties of PP/PTFE fibrillated foams: (a) Stress-strain curves; (b) Yielding strength, modulus, and tensile toughness[6]

    RFIM—Regular foam injection molding; MOFIM—Mold-opening foam injection molding

    图  8  (a) PLA/PET IMF复合泡沫微纳多层泡孔结构[68];(b) 纳米多孔结构的热传导机制示意图[87]

    Figure  8.  (a) Hierarchically porous foam morphology of PLA/PET IMF composites foams[68]; (b) Schematic illustration of the conductivity mechanism in hierarchically porous foam[87]

    l—Mean free path of a gas molecule; d—Pore diameter

    表  1  3种微孔发泡成型工艺技术比较

    Table  1.   Comparative techniques among three different microcellular foaming processes

    Comparative pointsBFMEFMCIM
    TypeNon-continuousContinuousContinues
    Sample stateSolidMoltenMolten
    Shape of sampleSimpleMediumComplicated
    Raw material required (amount)SmallLargeMedium to large
    Pore structureUniform and easy to obtain pores with small size and high densityUniform and easy to obtain pores with high expansion ratioNon-uniform and “skin-core” porous structure
    Fiber size changeNo effectIncreaseIncrease
    Dispersion of fiberNo effectForming fibril clustersForming fibril clusters
    Gas dissolution rateLowHighHigh
    Cause of thermodynamic instability$\displaystyle\left(+\dfrac{\partial T}{\partial {t} }\right)\;{\rm{or} }\;\left(-\dfrac{\partial P}{\partial {t} }\right)$Only $\displaystyle\left(-\dfrac{\partial P}{\partial t}\right)$Only $\displaystyle\left(-\dfrac{\partial P}{\partial {t} }\right)$
    Cycle timeLong timeModerateLess
    UseLab scaleCommercialCommercial
    CostCheapMore expensiveThe most expensive
    Notes: BF—Batch foaming; MEF—Microcellular extrusion foaming; MCIM—Microcellular injection molding; T—Temperature; P—Pressure; t—Time.
    下载: 导出CSV

    表  2  IMF复合材料微孔发泡研究进展

    Table  2.   Research progress on microcellular IMF composite foaming

    TypesMaterialFiber content/
    diameter/nm
    Foaming processCell
    size/μm
    Cell density/
    (cells·cm−3)
    FindingsRef.
    PolyolefinsPP/PET5wt%/210MEF108-109The tensile strength of IMF composite
    foam was nearly double that of pure PP, and
    the expansion ratio was enhanced by 3 times
    [65]
    PP/PBT4wt%/100-300BF100106-107The presence of PBT fibers enhanced expansion ratio and cell density, as well as greatly improved thermal insulation property[55]
    PE/PP5wt%/100-300BF27.69.8×108Compared with pure PE foam, the cell density of IMF foam increased by four orders of magnitude[61]
    PTFE
    reinforced composites
    PET/PTFE1wt%/200-500BF2-221011The PET foams with 1wt% PTFE possessed the
    smallest cell diameter and the highest cell density
    [69]
    PP/PTFE4wt%/<500MEF50-500107-108Superhydrophobic and lipophilic open-cell foams were prepared with an open cell ratio of up to 97.7%[21]
    PP/PTFE5wt%/143MCIM35108Compared with pure PP foam, the cell density of IMF composite foam enhanced by four orders of magnitude, the open cell rate reached 98.3%[70]
    Elastomer resinsTPEE/PTFE5wt%/<200MEF10.48.6×107As against pure TPEE foam, the expansion ratio of IMF composite foam enhanced by nearly 10 times[66]
    TPU/PTFE3wt%/ 290-340BF24108The presence of PET fibers enhanced the
    expansion ratio and cell density
    [71]
    Bio-
    degradable
    materials
    PCL/PLA20wt%BF83.9×106Fibers induced larger open cell ratios in
    PCL/PLA blend foam
    [60]
    PLA/PA63wt%/198BF231.8×108The cell density of PLA/PA6 IMF composite foam increased by two orders of magnitude
    compared with pure PLA foam
    [22]
    PLA/PET10wt%/114.8MCIM0.321.1×1013IMF composite with PET average fiber diameter of 114.8 nm and IMF composite foam with nano-scale pores were prepared[68]
    Notes: PP—Polypropylene; PBT—Polybutylene terephthalate; PE—Polyethylene; PTFE—Poly tetrafluoroethylene; TPEE—Thermoplastic polyester; TPU—Thermoplastic polyurethane; PA6—Polyamide 6.
    下载: 导出CSV
  • [1] ALTAN M. Thermoplastic foams: Processing, manufacturing, and characterization[M]. Boca Raton: CRC Press Inc, 2018: 104-161.
    [2] HU D D, GAO X L, QIANG W, et al. Formation mechanism of bi-modal cell structure polystyrene foams by synergistic effect of CO2-philic additive and co-blowing agent[J]. Journal of Supercritical Fluids,2022,181:105498. doi: 10.1016/j.supflu.2021.105498
    [3] JIN F L, ZHAO M, PARK M, et al. Recent trends of foaming in polymer processing: A review[J]. Polymers,2019,11(6):953. doi: 10.3390/polym11060953
    [4] SOH S H, LEE L Y. Microencapsulation and nanoencapsulation using supercritical fluid (SCF) techniques[J]. Pharmaceutics,2019,11(1):21. doi: 10.3390/pharmaceutics11010021
    [5] DUGAD R, RADHAKRISHNA G, GANDHI A. Recent advancements in manufacturing technologies of microcellular polymers: A review[J]. Journal of Polymer Research,2020,27(7):182-204. doi: 10.1007/s10965-020-02157-7
    [6] WANG G, ZHAO G, ZHANG L, et al. Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding[J]. Chemical Engineering Journal,2018,350:1-11. doi: 10.1016/j.cej.2018.05.161
    [7] ZHAO J, ZHAO Q, WANG C, et al. High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites[J]. Materials & Design,2017,131:1-11.
    [8] FU L, SHI Q, JI Y, et al. Improved cell nucleating effect of partially melted crystal structure to enhance the microcellular foaming and impact properties of isotactic polypropylene[J]. Journal of Supercritical Fluids,2020,160:104794. doi: 10.1016/j.supflu.2020.104794
    [9] WANG G, ZHAO G, DONG G, et al. Lightweight and strong microcellular injection molded PP/talc nanocomposite[J]. Composites Science and Technology,2018,168:38-46. doi: 10.1016/j.compscitech.2018.09.009
    [10] ZHAO J, ZHAO Q, WANG L, et al. Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers[J]. European Polymer Journal,2018,98:1-10. doi: 10.1016/j.eurpolymj.2017.11.001
    [11] ZHAO X P, ZHANG D F, YU S T, et al. Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends[J]. e-Polymers,2021,21(1):793-810. doi: 10.1515/epoly-2021-0072
    [12] MARTINEZ VILLADIEGO K, ARIAS TAPIA M J, USECHE J, et al. Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: A review[J]. Journal of Polymers and the Environment,2022,30(1):75-91. doi: 10.1007/s10924-021-02207-1
    [13] KUZMANOVIC M, DELVA L, CARDON L, et al. The effect of injection molding temperature on the morphology and mechanical properties of PP/PET blends and microfibrillar composites[J]. Polymers,2016,8(10):355-371. doi: 10.3390/polym8100355
    [14] XIA X, YANG W, HE S, et al. Formation of various crystalline structures in a polypropylene/polycarbonate in situ microfibrillar blend during the melt second flow[J]. Physical Chemistry Chemical Physics,2016,18(20):14030-14039. doi: 10.1039/C6CP01426G
    [15] CHEN Y, ZHONG G, LI Z M, et al. Microfibril reinforced polymer-polymer composites via hot stretching: Preparation, structure and properties[M]. Berlin: Springer Press Inc, 2012: 401-436.
    [16] 李忠明, 杨鸣波, 卢忠远, 等. 热拉伸比对PET/PE原位微纤化复合材料形态和拉伸性能的影响[J]. 复合材料学报, 2005, 22(3):9-15. doi: 10.3321/j.issn:1000-3851.2005.03.002

    LI Zhongming, YANG Mingbo, LU Zhongyuan, et al. Influence of hot stretch ratio on morphology and tensile properties of poly(ethylene terephthalate) and polyethylene in-situ microfibrillar composite[J]. Acta Materiae Compositae Sinica,2005,22(3):9-15(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.03.002
    [17] 徐鸿升, 李忠明, 王松杰, 等. PE-HD/PET原位微纤化共混物的动态流变性能研究-微纤含量的影响[J]. 中国塑料, 2006, 20(6):18-21. doi: 10.3321/j.issn:1001-9278.2006.06.004

    XU Hongsheng, LI Zhongming, WANG Songjie, et al. Dynamic rheological behaviors of PE-HD/PET microfibrillar reinforced composites: The influences of microfibril’s concentration[J]. China Plastics,2006,20(6):18-21(in Chinese). doi: 10.3321/j.issn:1001-9278.2006.06.004
    [18] YOKOHARA T, NOBUKAWA S, YAMAGUCHI M, et al. Rheological properties of polymer composites with flexible fine fibers[J]. Journal of Rheology,2011,55(6):1205-1218. doi: 10.1122/1.3626414
    [19] WU G J, XU Y X, CHEN J, et al. In situ fibrillation-reinforced polypropylene-based multi-component foams[J]. Polymers for Advanced Technologies,2021,32(10):4052-4060. doi: 10.1002/pat.5411
    [20] KAKROODI A R, KAZEMI Y, NOFAR M, et al. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films[J]. Chemical Engineering Journal,2017,308:772-782. doi: 10.1016/j.cej.2016.09.130
    [21] RIZVI A, CHU R, LEE J H, et al. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene[J]. ACS Applied Materials & Interfaces,2014,6(23):21131-21140.
    [22] KAKROODI A R, KAZEMI Y, DING W, et al. Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability[J]. Biomacromolecules,2015,16(12):3925-3935. doi: 10.1021/acs.biomac.5b01253
    [23] KUZMANOVIC M, DELVA L, CARDON L, et al. Relationship between the processing, structure, and properties of microfibrillar composites[J]. Advanced Materials,2020,32(52):2003938. doi: 10.1002/adma.202003938
    [24] KISS G. In situ composites: Blends of isotropic polymers and thermotropic liquid crystalline polymers[J]. Polymer Engineering and Science,1987,27(6):410-423. doi: 10.1002/pen.760270606
    [25] 朱钰婷, 谷琳, 何家隆, 等. 微纳层叠共挤PP/PA6/CNTs原位微纤复合膜的制备及性能研究[J]. 中国塑料, 2021, 35(10):1-7. doi: 10.19491/j.issn.1001-9278.2021.10.001

    ZHU Yuting, GU Lin, HE Jialong, et al. Preparation and properties of PP/PA6/CNTs in-situ microfiber composite films based on microlayer coextrusion[J]. China Plastics,2021,35(10):1-7(in Chinese). doi: 10.19491/j.issn.1001-9278.2021.10.001
    [26] SHAHIN A, SHAAYEGAN V, LEE P C, et al. In situ visualization for control of nano-fibrillation based on spunbond processing using a polypropylene/polyethylene terephthalate system[J]. International Polymer Processing,2021,36(3):332-344. doi: 10.1515/ipp-2020-4072
    [27] SHAHNOOSHI M, JAVADI A, NAZOCKDAST H, et al. Development of in situ nanofibrillar poly(lactic acid)/poly(butylene terephthalate) composites: Non-isothermal crystallization and crystal morphology[J]. European Polymer Journal,2020,125:109489. doi: 10.1016/j.eurpolymj.2020.109489
    [28] 张婷婷, 董珈豪, 王蒙, 等. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合材料微纤形态、结晶行为及流变和力学性能的影响[J]. 材料导报, 2018, 32(12):2032-2037. doi: 10.11896/j.issn.1005-023X.2018.12.017

    ZHANG Tingting, DONG Jiahao, WANG Meng, et al. Dispersed phase content of ethylene-vinyl acetate copolymer/polypropylene (EVA/PP) in-situ microfibrillar composites (MFCs): Influences to microfiber morphology, crystallization behavior, rheological and mechanical properties[J]. Materials Review,2018,32(12):2032-2037(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.12.017
    [29] LI X, HUANG Y, XIN C, et al. Effect of dispersed phase on the morphology of in situ microfibrils and the viscoelastic properties of its composite via direct extrusion[J]. Journal of Applied Polymer Science,2018,135(21):46286. doi: 10.1002/app.46286
    [30] SU J J, CUI C F, LIN Y, et al. In situ microfibril structure in incompatible isotactic polypropylene/polylactic acid blends controlled by viscosity ratio[J]. Polymer Engineering and Science,2020,60(4):832-840. doi: 10.1002/pen.25342
    [31] ZHAO C, MARK L, ALSHRAH M, et al. Challenge in manufacturing nanofibril composites with low matrix viscosity: Effects of matrix viscosity and fibril content[J]. European Polymer Journal,2019,121:109310. doi: 10.1016/j.eurpolymj.2019.109310
    [32] YI X, WANG Y, XU L, et al. Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: Influence of viscosity ratio[J]. European Polymer Journal,2010,46(4):719-730. doi: 10.1016/j.eurpolymj.2009.12.027
    [33] HUANG Y, HE Y, JIANG L L, et al. Effect of fibrillar morphology on the rheological properties of polypropylene/poly(hexamethylene adipamide) in situ microfibrillar composites[J]. Acta Polymerica Sinica,2017(5):867-874.
    [34] WANG D, LI F Q, WANG X H, et al. Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts[J]. Journal of Zhejiang University-Science A,2020,21(3):229-239. doi: 10.1631/jzus.A1900530
    [35] FAKIROV S, BHATTACHARYYA D, LIN R J T, et al. Contribution of coalescence to microfibril formation in polymer blends during cold drawing[J]. Journal of Macromolecular Science Part B-Physics,2007,46(1):183-193. doi: 10.1080/00222340601044375
    [36] JANG J U, YOUN S J, KIM S Y, et al. Effect of polypropylene-grafted-maleic anhydride content on physical properties of carbon fiber reinforced polypropylene composites[J]. Functional Composites and Structures,2020,2(4):045008. doi: 10.1088/2631-6331/abd374
    [37] LI Z M, YANG M B, XIE B H, et al. In-situ microfiber reinforced composite based on PET and PE via slit die extrusion and hot stretching: Influences of hot stretching ratio on morphology and tensile properties at a fixed composition[J]. Polymer Engineering & Science,2003,43(3):615-628.
    [38] DENCHEV Z, DENCHEVA N. Manufacturing and properties of aramid reinforced composites[M]. Cambridge: Woodhead Publish, 2012: 251-280.
    [39] JAYANARAYANAN K, JOSE T, THOMAS S, et al. Effect of draw ratio on the microstructure, thermal, tensile and dynamic rheological properties of insitu microfibrillar composites[J]. European Polymer Journal,2009,45(6):1738-1747. doi: 10.1016/j.eurpolymj.2009.02.024
    [40] KUZMANOVIC M, DELVA L, MI D, et al. Development of crystalline morphology and its relationship with mechanical properties of PP/PET microfibrillar composites containing POE and POE-g-MA[J]. Polymers,2018,10(3):291. doi: 10.3390/polym10030291
    [41] LA M, CERAULO F, GIACCHI G, et al. Effect of a compatibilizer on the morphology and properties of polypropylene/polyethylentherephthalate spun fibers[J]. Polymers,2017,9(2):47. doi: 10.3390/polym9020047
    [42] LIU T, WANG Q W, XIE Y J. et al. Effects of use of coupling agents on the properties of microfibrillar composite based on high-density polyethylene and polyamide-6[J]. Polymer Bulletin, 2014, 71: 685-703.
    [43] QUAN H, LI Z M, YANG M B, et al. On transcrystallinity in semi-crystalline polymer composites[J]. Composites Science and Technology,2005,65(7):999-1021.
    [44] RIZVI A, TABATABAEI A, VAHEDI P, et al. Non-crosslinked thermoplastic reticulated polymer foams from crystallization-induced structural heterogeneities[J]. Polymer,2018,135:185-192. doi: 10.1016/j.polymer.2017.12.006
    [45] LI Z M, LI L B, SHEN K Z, et al. Transcrystalline morphology of an in situ microfibrillar poly(ethylene terephthalate)/poly(propylene) blend fabricated through a slit extrusion hot stretching-quenching process[J]. Macromolecular Rapid Communications,2004,25(4):553-558. doi: 10.1002/marc.200300086
    [46] RIZVI A, PARK C B, FAVIS B D. Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils[J]. Polymer,2015,68:83-91. doi: 10.1016/j.polymer.2015.04.081
    [47] RAGHAVAN S R, DOUGLAS J F. The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links[J]. Soft Matter,2012,8(33):8539-8546. doi: 10.1039/c2sm25107h
    [48] WONG A, GUO Y, PARK C B. Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide-Effects of extensional stresses and crystals[J]. Journal of Supercritical Fluids,2013,79:142-151. doi: 10.1016/j.supflu.2013.02.013
    [49] MORT R, PETERS E, CURTZWILER G, et al. Biofillers improved compression modulus of extruded PLA foams[J]. Sustainability,2022,14(9):5521.
    [50] NOFAR M, PACK C B. Poly(lactic acid) foaming[J]. Progress in Polymer Science,2014,39(10):1721-1741. doi: 10.1016/j.progpolymsci.2014.04.001
    [51] LI S, HE G, LIAO X, et al. Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam[J]. RSC Advances,2017,7(11):6266-6277. doi: 10.1039/C6RA26457C
    [52] WANG G, ZHAO J, MARK L H, et al. Ultra-tough and super thermal-insulation nanocellular PMMA/TPU[J]. Chemical Engineering Journal,2017,325:632-646. doi: 10.1016/j.cej.2017.05.116
    [53] WANG G, ZHAO J, YU K, et al. Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms[J]. Polymer,2017,119:28-39. doi: 10.1016/j.polymer.2017.05.016
    [54] QIAO Y, JALALI A, YANG J, et al. Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites[J]. Journal of Materials Science,2021,56(4):3562-3575. doi: 10.1007/s10853-020-05328-5
    [55] ZHAO C, MARK L H, CHANG E, et al. Highly expanded, highly insulating polypropylene/polybutylene-terephthalate composite foams manufactured by nano-fibrillation technology[J]. Materials & Design,2020,188:108450.
    [56] KENNEDY P, ZHENG R. Flow analysis of injection molds[M]. Berlin: Springer, 2013: 106-137.
    [57] PATCHARAPHUN S, MENNIG G. Simulation and experimental investigations of material distribution in the sandwich injection molding process[J]. Polymer-Plastics Technology and Engineering,2006,45(6):759-768. doi: 10.1080/03602550600611651
    [58] KWEON M S, EMBABI M, SHIVOKHIN M E, et al. Tuning high and low temperature foaming behavior of linear and long-chain branched polypropylene via partial and complete melting[J]. Polymers,2022,14(1):44.
    [59] VISHAL B. Foaming and rheological properties of aqueous solutions: An interfacial study[J]. Reviews in Chemical Engineering,2021,39(2):60. doi: 10.1515/revce-2020-0060
    [60] QIAO Y H, LI Q, JALALI A, et al. In-situ microfibrillated poly(ε-caprolactone)/poly(lactic acid) composites with enhanced rheological properties, crystallization kinetics and foaming ability[J]. Composites Part B: Engineering,2021,208:108594. doi: 10.1016/j.compositesb.2020.108594
    [61] RIZVI A, PARK C B. Dispersed polypropylene fibrils improve the foaming ability of a polyethylene matrix[J]. Polymer,2014,55(16):4199-4205. doi: 10.1016/j.polymer.2014.06.014
    [62] JIANG J, LI Z H, YANG H G, et al. Microcellular injection molding of polymers: A review of process know-how, emerging technologies, and future directions[J]. Current Opinion in Chemical Engineering,2021,33:100694. doi: 10.1016/j.coche.2021.100694
    [63] HE M, XU C, ZHANG R, et al. Progress of polypropylene-supercritical CO2 extrusion foaming[J]. Polymer Materials Science & Engineering,2020,36(6):177-183.
    [64] 付大炯, 王琪, 李振华, 等. 超临界N2及CO2注塑发泡聚丙烯性能对比研究[J]. 塑料工业, 2018, 46(11):81-84. doi: 10.3969/j.issn.1005-5770.2018.11.018

    FU Dajiong, WANG Qi, LI Zhenhua, et al. Comparative study on the properties of injection foamed polypropylene by using supercritical N2 and CO2[J]. China Plastics Industry,2018,46(11):81-84(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.11.018
    [65] RIZVI A, ANDALIB Z, PARK C B. Fiber-spun polypropylene/polyethylene terephthalate microfibrillar composites with enhanced tensile and rheological properties and foaming ability[J]. Polymer,2017,110:139-148. doi: 10.1016/j.polymer.2016.12.054
    [66] JIANG R, LIU T, XU Z, et al. Improving the continuous microcellular extrusion foaming ability with supercritical CO2 of thermoplastic polyether ester elastomer through in-situ fibrillation of polytetrafluoroethylene[J]. Polymers,2019,11(12):11121983.
    [67] ZHAO J, WANG G, ZHANG L, et al. Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding[J]. European Polymer Journal,2019,119:22-31. doi: 10.1016/j.eurpolymj.2019.07.016
    [68] WANG G, ZHAO J, WANG G, et al. Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding[J]. Chemical Engineering Journal,2020,390:124520. doi: 10.1016/j.cej.2020.124520
    [69] JIANG C, HAN S, CHEN S H, et al. The role of PTFE in-situ fibrillation on PET microcellular foaming[J]. Polymer,2021,212:123171. doi: 10.1016/j.polymer.2020.123171
    [70] ZHAO J, WANG G, CHEN Z, et al. Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam[J]. Composites Part B: Engineering,2021,215:108786. doi: 10.1016/j.compositesb.2021.108786
    [71] YE Z, LI D, ZHANG F, et al. TPU modified by in-situ fiber forming and its foam performance research[J]. China Plastics Industry,2019,47(2):117-121, 133.
    [72] WEI L, HUANG A, SUN J, et al. Isotactic polypropylene/polyethylene terephthalate in situ microfibrillar composites foams using supercritical CO2[J]. Polymer Materials Science & Engineering,2018,34(7):66-71.
    [73] DHANUMALAYAN E, JOSHI G M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review[J]. Advanced Composites and Hybrid Materials,2018,1(2):247-268. doi: 10.1007/s42114-018-0023-8
    [74] 李好义, 陈琪琪, 刘宇健, 等. 耐高温聚合物微/纳米纤维制备技术及应用研究进展[J]. 高分子材料科学与工程, 2020, 36(12):158-164. doi: 10.16865/j.cnki.1000-7555.2020.0297

    LI Haoyi, CHEN Qiqi, LIU Yujian, et al. Progress in preparation technology and application of high temperature resistant polymer micro/nano fibers[J]. Polymer Materials Science & Engineering,2020,36(12):158-164(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0297
    [75] JURCZUK K, GALESKI A, MORAWIEC J. Effect of poly(tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes[J]. European Polymer Journal,2017,88:171-182. doi: 10.1016/j.eurpolymj.2017.01.024
    [76] WANG Y Q, MI J G, DU Z J, et al. Peculiar micro and nano cell morphology of PBT/PTFE nanofibrillated composite foams of supercritical CO2 foaming induced by in-situ formed 3D PTFE nanofiber networks[J]. Polymer,2021,232:124165. doi: 10.1016/j.polymer.2021.124165
    [77] ZHAI W, JIANG J, PARK C B. A review on physical foaming of thermoplastic and vulcanized elastomers[J]. Polymer Reviews,2022,62(1):95-141. doi: 10.1080/15583724.2021.1897996
    [78] CAO Y J, JIANG J, JIANG Y F, et al. Biodegradable highly porous interconnected poly(ε-caprolactone)/poly(L-lactide-co-ε-aprolactone) scaffolds by supercritical foaming for small-diameter vascular tissue engineering[J]. Polymers for Advanced Technologies, 2022, 33(1): 440-451.
    [79] 党开放, 黄泓鑫, 武高健, 等. PLA/PBAT/PTFE原位成纤复合材料微孔发泡行为及性能[J]. 塑料工业, 2021, 49(8):61-65. doi: 10.3969/j.issn.1005-5770.2021.08.013

    DANG Kaifang, HUANG Hongxin, WU Gaojian, et al. Microcellular foaming behavior and properties of PLA/PBAT/PTFE in-situ microfibrilla composites[J]. China Plastics Industry,2021,49(8):61-65(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.08.013
    [80] COSTEUX S. CO2 blown nanocellular foams[J]. Journal of Applied Polymer Science,2015,132(16):41293.
    [81] LI Z M, YANG W, LI L B, et al. Morphology and nonisothermal crystallization of in situ microfibrillar poly(ethylene terephthalate)/polypropylene blend fabricated through slit-extrusion, hot-stretch quenching[J]. Journal of Polymer Science, Part B: Polymer Physics,2004,42(3):374-385. doi: 10.1002/polb.10660
    [82] LU A, YANG M B, LI Z M, et al. Tensile properties of poly(ethylene terephthalate) and polyethylene in-situ microfiber reinforced composite formed via slit die extrusion and hot-stretching[J]. Materials Letters,2002,56(5):756-762. doi: 10.1016/S0167-577X(02)00609-2
    [83] HUANG R, LI Z M, YANG M B, et al. Poly(ethylene terephthalate)/polyethylene composite based on in-situ microfiber formation[J]. Polymer — Plastics Technology and Engineering,2002,41(1):19-32. doi: 10.1081/PPT-120002057
    [84] QIU L, ZHENG X H, ZHU J, et al. Thermal transport in high-strength polymethacrylimide (PMI) foam insulations[J]. International Journal of Thermophysics,2015,36(10-11):2523-2534. doi: 10.1007/s10765-014-1651-z
    [85] AZDAST T, HASANZADEH R. Increasing cell density/decreasing cell size to produce microcellular and nanocellular thermoplastic foams: A review[J]. Journal of Cellular Plastics,2021,57(5):769-797. doi: 10.1177/0021955X20959301
    [86] WANG G L, WANG C D, ZHAO J C, et al. Modelling of thermal transport through a nanocellular polymer foam: Toward the generation of a new superinsulating material[J]. Nanoscale,2017,9(18):5996-6009. doi: 10.1039/C7NR00327G
    [87] RIZVI A, CHU R K M, PARK C B. Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams[J]. ACS Applied Materials & Interfaces,2018,10(44):38410-38417.
    [88] PINTO J, ATHANASSIOU A, FRAGOULI D. Surface modification of polymeric foams for oil spills remediation[J]. Journal of Environmental Management,2018,206:872-889. doi: 10.1016/j.jenvman.2017.11.060
    [89] GUO X M, YAO Y Y, ZHU P X, et al. Preparation of porous PTFE/C composite foam and its application in gravity-driven oil-water separation[J]. Polymer International,2021,10:6356.
    [90] HUANG P, WU F, SHEN B, et al. Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation[J]. Chemical Engineering Journal,2019,370:1322-1330. doi: 10.1016/j.cej.2019.03.289
    [91] TANG Y, LIU Z, ZHAO K. Fabrication of hollow and porous polystyrene fibrous membranes by electrospinning combined with freeze-drying for oil removal from water[J]. Journal of Applied Polymer Science,2019,136(13):47262. doi: 10.1002/app.47262
    [92] LIU Z, TANG Y, ZHAO K, et al. Superhydrophobic SiO2 micro/nanofibrous membranes with porous surface prepared by freeze electrospinning for oil adsorption[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2019,568:356-361.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  845
  • HTML全文浏览量:  553
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-06-04
  • 录用日期:  2022-06-18
  • 网络出版日期:  2022-07-05
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回