基于多孔碳酸钙构建的双pH响应性嘧菌酯控释微球的制备及其生物安全性

Dual pH responsive azoxystrobin controlled release microspheres constructed from porous calcium carbonate and its biosecurity

  • 摘要: 刺激响应性农药控释系统为提高农药利用效率和减少环境污染提供了强有力的策略。本研究中,在采用共沉淀法制备多孔碳酸钙微球(CaCO3)的基础上,通过浸渍吸附法获得负载嘧菌酯(Az)的多孔碳酸钙微球(Az/CaCO3),并在复合微球表面进一步包覆单宁酸-Cu2+络合物,构建了一个具有双pH响应性的嘧菌酯控释系统(Az/CaCO3@TA-Cu)。理化性能研究表明成功制备了Az/CaCO3@TA-Cu微球,其载药量为16.42%。模拟释放研究结果表明Az/CaCO3@TA-Cu具有良好的pH控释性能,在pH=7的磷酸缓冲溶液中96 h累积释放率为36.99%,而在pH=5和pH=9条件下的累积释放率分别为74.32%和58.79%。菌丝体生长速率实验表明Az/CaCO3@TA-Cu对禾谷镰刀菌生长具有较好的抑制作用,中值抑制浓度为纯Az和Az/CaCO3的6.58倍和3.28倍。此外,小麦发芽率和斑马鱼存活率统计结果显示,Az/CaCO3@TA-Cu相对于Az/CaCO3和纯Az表现出更优的生物安全性。

     

    Abstract: Stimuli-responsive pesticide controlled release systems provide a powerful strategy for improving pesticide utilization efficiency and reducing environmental pollution. In this study, based on the preparation of porous calcium carbonate microspheres (CaCO3) by co-precipitation method, porous calcium carbonate microspheres loaded with pyrimethanil (Az) were obtained by impregnation and adsorption method (Az/CaCO3), and the surface of the composite microspheres was further encapsulated with a tannic acid-Cu2+ complex, which constructed a pyrimethanil controlled-release system with dual pH-responsiveness (Az/CaCO3@TA-Cu). Physicochemical performance studies showed successful preparation of Az/CaCO3@TA-Cu microspheres with 16.42% drug loading. The results of simulated release studies showed that Az/CaCO3@TA-Cu had good pH-controlled release properties, with a cumulative release rate of 36.99% in phosphate buffer solution at pH = 7 for 96 h, whereas the cumulative release rates at pH = 5 and pH = 9 were 74.32% and 58.79%, respectively. Mycelial growth rate experiments showed that Az/CaCO3@TA-Cu had a better inhibitory effect on the growth of Fusarium graminearum, with median inhibitory concentrations of 6.58 and 3.28 times that of pure Az and Az/CaCO3. In addition, wheat germination and zebrafish survival statistics showed that Az/CaCO3@TA-Cu exhibited superior biosafety relative to Az/CaCO3 and pure Az.

     

/

返回文章
返回