K2CO3强化熔融盐改性MgO复合材料的制备及其对低浓度CO2的吸附特性

Design and performance of K2CO3-enhanced molten salt-modified MgO composites for low-concentration CO2 sequestration

  • 摘要: 随着全球碳中和目标的推进,开发高效低能耗的CO2捕集技术成为当前研究热点。熔融盐改性MgO作为典型的中温CO2吸附剂,在纯CO2条件下表现出优异吸附活性,但其在低浓度CO2中吸附性能衰减严重,这一瓶颈严重制约了其实际应用。本研究针对这一关键问题,提出K2CO3强化策略,优化制备了40mol% K2CO3-10mol%(Li0.3Na0.6K0.1)NO3-MgO复合材料。结果表明,该材料在300℃、20% CO2条件下吸附容量达1.38 mmol/g,较未改性体系提升13倍。通过多种表征技术研究了K2CO3掺杂对MgO的影响规律及吸附剂的CO2吸附机制。所开发的吸附剂材料表现出良好的循环稳定性,经20次循环后容量可保持1.30 mmol/g,展现出一定的工业应用潜力。本研究不仅开发了具有较高活性的中温CO2吸附剂材料,也为高效低浓度CO2吸附材料的设计提供了新思路。

     

    Abstract: With the global advancement toward carbon neutrality, the development of high-efficiency, low-energy CO2 capture technologies has become a research priority. Although molten salt-modified MgO exhibits excellent CO2 adsorption performance under pure CO2 conditions as a representative intermediate-temperature adsorbent, its severe performance degradation under low CO2 concentrations significantly limits its practical application. To address this critical challenge, this study proposes a K2CO3-enhanced strategy and optimizes the synthesis of a 40mol% K2CO3-10%(Li0.3Na0.6K0.1)NO3-MgO composite adsorbent. The results demonstrate that the optimized material achieves a CO2 uptake of 1.38 mmol/g under 20% CO2 at 300℃, representing a 13-fold improvement over the unmodified system. Through multi-scale characterization techniques, the influence of K2CO3 doping on MgO and the underlying CO2 adsorption mechanism were systematically investigated. The developed adsorbent exhibits excellent cycling stability, maintaining a capacity of 1.30 mmol/g after 20 adsorption-desorption cycles, demonstrating promising potential for industrial applications. This study not only develops a highly active intermediate-temperature CO2 adsorbent but also provides new insights for designing efficient low-concentration CO2 capture materials.

     

/

返回文章
返回