Sizes effect on the tensile behaviors of H65-IF-H65 laminated metal composites
-
摘要:
采用轧制结合退火的方式制备了厚度为0.12 mm、标距宽度为1~9 mm的H65黄铜/IF钢/H65黄铜3层层状复合金属材料(H65-IF-H65),并借助电子背散射衍射(EBSD)、数字图像相关(DIC)技术、常规拉伸、原位拉伸和SEM等手段分析了试样宽度对复合材料力学行为的影响。研究结果表明:层状复合材料中的H65-IF界面在退火过程中未发生元素扩散,界面结合方式为机械结合。随着标距宽度由9 mm 逐渐降低至1 mm,材料的抗拉强度、屈服强度基本保持不变,但总延伸率、均匀延伸率和不均匀延伸率分别由30.3%、23.4% 和6.9%下降至20.3%、18.8%和1.5%,加工硬化能力迅速减弱。与此同时,材料的应变集中程度逐渐加剧,拉伸断口上的韧窝带宽度变小且带内的韧窝数量和尺寸也明显减小,呈现出显著的尺寸效应。H65-IF-H65层状复合材料的尺寸效应主要源于剪切应力的交互作用随着标距宽度的降低而被抑制,裂纹更易沿单道剪切带快速扩展而导致塑性下降。
Abstract:The H65 brass alloy-interstitial free steel-H65 brass alloy (H65-IF-H65) laminated metal composites (LMCs) of 0.12 mm thickness and 1-9 mm gauge widths were prepared by rolling combined with annealing. The electron back scatter diffraction (EBSD), digital image correlation (DIC) technology, conventional tensile testing, in-situ tensile testing and SEM were used to analysis the effect of specimen width on the mechanical behavior of the H65-IF-H65 LMC. The results show that the H65-IF interface is mechanical bonded without elements diffusion during the annealing process. As the gauge width gradually reduced from 9 mm to 1 mm, the tensile strength and yield strength remain basically unchanged, meanwhile the total, the uniform, and the non-uniform elongations decrease from 30.3%, 23.4% and 6.9% to 20.3%, 18.8% and 1.5%, respectively. The work hardening ability also decreases rapidly. Moreover, the strain of the H65-IF-H65 LMCs is gradually concentrated. On the tensile fracture, the width of the dimple band and the number and size of dimples within it also decrease significantly, which indicates a significant size effect. The main reason of sample sizes effect on the tensile behaviors of H65-IF-H65 LMCs is that the interaction of shear stress is inhibited with the decrease of the gauge width. The cracks are more likely to spread rapidly in the single shear band and result in a decreased ductility.
-
Keywords:
- laminated metal composites /
- size effect /
- tensile fracture /
- in-situ tension /
- crack propagation
-
-
图 3 H65-IF-H65层状复合材料横截面显微结构EBSD分析(a)及IF层和H65层的反极图(b)及欧拉角φ2=45o的反极图(ODF)截面图(c)
φ1, Φ—Euler angles
Figure 3. EBSD analysis (a) of cross section microstructure of the H65-IF-H65 LMCs, and the inverse pole figures (ODF) (b) and Euler angles φ2=45° orientation distribution function sections (c) of IF layer and H65 layer
图 7 ((a)~(c))标距宽度为1 mm的H65-IF-H65层状复合材料试样拉伸至工程应变约为10%、18.8%(颈缩点)和20%(即将断裂)的应变分布图;((d)~(f))标距宽度为9 mm试样拉伸至工程应变约为10%、29.3%(颈缩点)和37.3%(即将断裂)的应变分布图
Figure 7. Strain distributions of the H65-IF-H65 LMCs specimens with gauge width of 1 mm at the strains of 10%, 18.8% (necking point) and 20% (about to break) ((a)-(c)), and 9 mm at the strains of 10%, 29.3% (necking point) and 37.3% (about to break) ((d)-(f)), respectively
图 8 标距宽度为1 mm (a)和9 mm (b)的H65-IF-H65层状复合材料拉伸至工程应变18.8%(颈缩点)和29.3%(颈缩点)时的表面形貌及相应的粗糙度曲线(c)
Figure 8. Surface morphologies of the H65-IF-H65 LMCs specimens with gauge widths of 1 mm (a) and 9 mm (b) at the strains of 18.8% (necking point) and 29.3% (necking point) and their surface roughness curves (c)
图 9 标距宽度为1 mm ((a)~(d))和9 mm ((e)~(h))的H65-IF-H65层状复合材料试样在裂纹扩展过程中的侧面SEM图像(图9(i)和图9(j)为图9(f)中裂纹前端放大图与EDS分析;图9(k)和图9(l)为图9(f)和图9(h)在电镜下拍摄的宏观照片)
Figure 9. Side SEM images during the crack growth of the H65-IF-H65 LMCs samples with gauge widths of 1 mm ((a)-(d)) and 9 mm ((e)-(h)) (Fig. 9(i) and Fig. 9(j) are the enlarged image and EDS analysis of the crack front in Fig. 9(f); Fig. 9(k) and Fig. 9(l) are the macroscopic photographs of Fig. 9(f) and Fig. 9(h) under electron microscope)
图 10 标距宽度1 mm (a)和9 mm (d)的H65-IF-H65层状复合材料试样断口正面SEM图像:((b), (c))图10(a)中左侧和右侧框位置放大图;((e), (f))图10(d)中左侧和右侧框位置放大图
Figure 10. SEM images of the front side of the H65-IF-H65 LMCs specimen with gauge width of 1 mm (a) and 9 mm (d): ((b), (c)) Enlarged images of the left and right frames in Fig. 10(a); ((e), (f)) Enlarged images of the left and right frames in Fig. 10(d)
表 1 H65黄铜-IF钢-H65黄铜(H65-IF-H65)层状复合材料(LMCs)中H65黄铜和IF钢成分(单位:wt%)
Table 1 Compositions of H65 brass and IF steel in the H65 brass-IF steel-H65 brass (H65-IF-H65) laminated metal composites (LMCs) (Unit: wt%)
Material Element H65 Cu Zn P Fe Impurities 64.524 Bal. ≤0.01 0.016 <0.2 IF Fe C Mn Cu Ni Cr P S Bal. 0.003 0.18 0.01 0.01 0.01 0.03 0.004 Note: Bal.—Banlance. -
[1] 张志娟, 张兵, 赵田丽, 等. 轧制三金属复合材料研究进展[J]. 精密成形工程, 2021(13): 23-34. ZHANG Zhijuan, ZHANG Bing, ZHAO Tianli, et al. Research progress of tri-metal composites prepared by rolling process[J]. Journal of Netshape Forming Engineering, 2021(13): 23-34(in Chinese).
[2] MA X, HUANG C, MOERING J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces[J]. Acta Materialia, 2016, 116: 43-52. DOI: 10.1016/j.actamat.2016.06.023
[3] 梅瑞斌, 史现利, 包立, 等. 多道次热辊轧制Al/Mg层状复合板材结合面特性[J]. 复合材料学报, 2022, 39(7): 3485-3497. MEI Ruibin, SHI Xianli, BAO Li, et al. Interface characteristics study of Al/Mg laminated composite sheets by multi-passes RHR[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3485-3497(in Chinese).
[4] 常海, 徐超, 胡小石. 累积叠轧纯Mg/ZK60镁合金层状金属复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1): 178-185. CHANG Hai, XU Chao, XU Xiaoshi. Microstructure evolution and mechanical properties of Mg/ZK60 laminated composite fabricated by accumulated roll-bonding[J]. Acta Materiae Compositae Sinica, 2019, 36(1): 178-185(in Chinese).
[5] RAHMATABADI D, TAYYEBI M, HASHEMI R. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB process[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25: 564-572. DOI: 10.1007/s12613-018-1603-x
[6] ZHANG X B, YU Y B, LIU B, et al. Mechanical properties and tensile fracture mechanism investigation of Al/Cu/Ti/Cu/Al laminated omposites fabricated by rolling[J]. Journal of Alloys and Compounds, 2019, 805: 338-345. DOI: 10.1016/j.jallcom.2019.07.064
[7] 郝平菊, 王振华, 刘元铭. 退火温度对铜/铝/铜复合板结合性能的影响[J]. 热加工工艺, 2018(47): 159-162. HAO Pingju, WANG Zhenhua, LIU Yuanming. Effect of annealing temperature on bonding properties of Cu/Al/Cu clad sheet[J]. Hot Working Technology, 2018(47): 159-162(in Chinese).
[8] WANG P J, HUANG H T, LIU J J, et al. Microstructure and mechanical properties of Ti6Al4V/AA6061/AZ31 laminated metal composites (LMCs) fabricated by hot roll bonding[J]. Journal of Alloys and Compounds, 2021, 861: 157943. DOI: 10.1016/j.jallcom.2020.157943
[9] ENGEL U, ECKSTEIN R. Microforming-from basic research to its realization[J]. Journal of Materials Processing Technology, 2002, 125-126: 35-44. DOI: 10.1016/S0924-0136(02)00415-6
[10] 赵祥帅, 刘粤, KONG Charlie, 等. 异步轧制与退火铜箔的厚度尺寸效应研究[J]. 塑性工程学报, 2021(28): 126-133. ZHAO Xiangshuai, LIU Yue, KONG Charlie, et al. Research on thickness size effect of asymmetric rolled and annealed copper foils[J]. Journal of Plasticity Engineering, 2021(28): 126-133(in Chinese).
[11] ZHAO Y, GUO Y, WEI Q, et al. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu[J]. Scripta Materialia, 2008, 59: 627-630. DOI: 10.1016/j.scriptamat.2008.05.031
[12] 赵阳, 李文锦, 孙艳姣, 等. IF钢在轧制极薄带过程中的力学性能尺寸效应研究[J]. 四川冶金, 2022(44): 6-10. ZHAO Yang, LI Wenjin, SUN Yanjiao, et al. Research on size effect of mechanical properties of IF steel during the process of preparing foil by cold rolling[J]. Sichuan Metallurgy, 2022(44): 6-10(in Chinese).
[13] LI Y P, ZHU X F, TAN J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation[J]. Journal of Materials Research, 2009, 24: 728-735. DOI: 10.1557/jmr.2009.0092
[14] CHEN W, HE W, LUO N, et al. Effect of layer thickness on the enhanced strength and ductility of laminated Ti/Al composite[J]. Materials Science and Engineering: A, 2022, 859: 144230. DOI: 10.1016/j.msea.2022.144230
[15] XIA Y, WU H, MIAO K, et al. Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum[J]. Journal of Materials Science & Technology, 2022, 111: 256-267.
[16] GUO W, JÄGLE E, YAO J, et al. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates[J]. Acta Materialia, 2014, 80: 94-106. DOI: 10.1016/j.actamat.2014.07.027
[17] WANG K, WEI A P, SHI Z M, et al. The preparation and performance of grain size gradient TWIP steel fabricated by laser heat treatment[J]. Materials Science and Engineering: A, 2019, 743: 294-300. DOI: 10.1016/j.msea.2018.11.074
[18] 赵志毅, 张晓君, 薛润东, 等. 不同热连轧工艺Ti-IF钢板中析出相及织构的研究[J]. 材料热处理技术, 2009(38): 25-28. ZHAO Zhiyi, ZHANG Xiaojun, XUE Rundong, et al. Research on precipitates and texture in Ti-IF steel sheets produced by different hot-rolling process[J]. Material & Heat Treatment, 2009(38): 25-28(in Chinese).
[19] 杜柳青. 铜合金薄板的微塑性成形尺寸效应研究[D]. 沈阳: 东北大学, 2022. DU Liuqing. Research on size effect of microplastic forming of copper alloy sheet[D]. Shenyang: Northeastern University, 2022(in Chinese).
[20] 李文锦. IF钢极薄带微观结构及力学性能尺寸效应研究[D]. 阜新: 辽宁工程技术大学, 2022. LI Wenjing. Study on size effect on the microstructure andmechanical properties of IF steel ultra thin strip[D]. Fuxin: Liaoning Technical University, 2022(in Chinese).
[21] DINI G, NAJAFIZADEH A, UEJI R, et al. Tensile deformation behavior of high manganese austenitic steel: The role of grain size[J]. Materials & Design, 2010, 31: 3395-3402.
[22] MOLOTNIKOV A, LAPOVOK R, GU C F, et al. Size effects in micro cup drawing[J]. Materials Science and Engineering: A, 2012, 550: 312-319. DOI: 10.1016/j.msea.2012.04.079
[23] WANG Y, DONG P L, XU Z Y, et al. A constitutive model for thin sheet metal in micro-forming considering first order size effects[J]. Materials & Design, 2010, 31: 1010-1014.
[24] GEIGER M, VOLLERTSEN F, KALS R. Fundamentals on the manufacturing of sheet metal microparts[J]. CIRP Annals, 1996, 45: 277-282. DOI: 10.1016/S0007-8506(07)63063-7
[25] ZHAO Z, RADOVITZKY R, CUITIÑO A. A study of surface roughening in fcc metals using direct numerical simulation[J]. Acta Materialia, 2004, 52: 5791-5804. DOI: 10.1016/j.actamat.2004.08.037
[26] SOLHJOO S, HALBERTSMA P J, VELDHUIS M, et al. Effects of loading conditions on free surface roughening of AISI 420 martensitic stainless steel[J]. Journal of Materials Processing Technology, 2020, 275: 116311. DOI: 10.1016/j.jmatprotec.2019.116311
[27] AL-QURESHI H A, KLEIN A N, FREDEL M C. Grain size and surface roughness effect on the instability strains in sheet metal stretching[J]. Journal of Materials Processing Technology, 2005, 170: 204-210. DOI: 10.1016/j.jmatprotec.2005.04.116
[28] ZHENG P F, CHEN R, LIU H T, et al. On the standards and practices for miniaturized tensile test—A review[J]. Fusion Engineering and Design, 2020, 161: 112006. DOI: 10.1016/j.fusengdes.2020.112006
[29] ZHAO Y H, GUO Y Z, WEI Q, et al. Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves[J]. Materials Science and Engineering: A, 2009, 525: 68-77. DOI: 10.1016/j.msea.2009.06.031
[30] DODD B, BAI Y. Adiabatic shear localization[M]. London: Elsevier, 2012: 1-20.
[31] 崔约贤, 王长利. 金属断口分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 34-45. CUI Yuexian, WANG Changli. Analysis of metal fracture[M]. Harbin: Harbin Institute of Technology Press, 1998: 34-45(in Chinese).
[32] 梁伟, 杨晓翔. 黄铜薄板单向拉伸第Ⅱ类尺寸效应[J]. 塑性工程学报, 2013(20): 100-107. LIANG Wei, YANG Xiaoxiang. Second class size effects on brass sheet in tensile test[J]. Journal of Plasticity Engineering, 2013(20): 100-107(in Chinese).
-
期刊类型引用(8)
1. 丁能鑫,侯夫庆,杨会康,张春辉. 石英纤维的表面改性及分散特性研究. 中国造纸. 2023(06): 56-63 . 百度学术
2. 杨娜,苏韬,黄锴荻,王文俊. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能. 复合材料学报. 2023(09): 5002-5010 . 本站查看
3. 束长朋,王茂源,周权,宋宁,倪礼忠. 苯并噁嗪-氨基稀释剂改性硅炔杂化树脂及其复合材料性能. 复合材料学报. 2020(11): 2718-2725 . 本站查看
4. 成滨,扈艳红,邓诗峰,杜磊,周燕,杨藤,崔方旭. 一种含腈基的硅烷偶联剂改性石英纤维/含硅芳炔复合材料. 复合材料学报. 2019(03): 545-554 . 本站查看
5. 王卓,王欢,任鹏刚,王明存. 硅氧烷杂化苯并恶嗪及其耐高温复合材料. 热固性树脂. 2019(02): 13-20 . 百度学术
6. 杨海荟,崔丽平. 新型含醚酰亚胺端炔硅烷偶联剂的合成研究. 广东化工. 2019(18): 69-71+78 . 百度学术
7. 宋来福,杨彩云. 复合材料界面理论及石英纤维表面处理与改性方法研究进展. 纺织科学与工程学报. 2018(01): 171-176 . 百度学术
8. 杨海荟,扈艳红,杜磊,顾渊博,张芳芳. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性. 玻璃钢/复合材料. 2016(08): 13-21 . 百度学术
其他类型引用(4)
-
其他相关附件
-
目的
H65/IF/H65层状复合材料不仅具有外层H65铜良好的导电、导热和耐蚀性能,还可兼具芯部IF钢优异的强度、塑性及成形性能。鉴于H65/IF/H65层状复合材料在微型电子元器件方面的巨大应用潜力,其势必会面临微拉伸和微冲压等工艺所带来的外在尺寸效应,故本文旨在研究试样宽度对已优化层厚及层厚比的H65/IF/H65层状复合材料力学性能的影响及其机理。
方法H65/IF/H65层状复合材料为三层商用H65、IF、H65金属薄板通过轧制结合退火复合而成。用线切割沿轧制方向切割出标距宽度分别为1、2、3、4、5、9mm、标距长度为25 mm的拉伸试样。采用配置非接触式视频引伸计AVE 2的Instron3369台式电子万能机进行常规拉伸测试。利用数字图像相关技术DIC对拉伸过程中的应变场进行分析。采用配置(EBSD, HKL/Channel 5 system)的FEI Nova Nano SEM 450扫描显微镜对两侧H65层和中间IF层进行晶粒度统计、取向观测。利用配置有EDS装置和3D roughness软件的phenom XL扫描电镜对H65/IF/H65层状复合材料成分分布、断口形貌和拉伸过程中的表面粗糙度进行表征。利用1kN载荷的原位拉伸台对样品裂纹萌生和扩展情况进行分析。
结果(1)H65/IF/H65层状复合材料厚度约为120 μm,其中芯部IF层与单侧H65层平均层厚为100 μm和10 μm左右,IF层与H65层平均晶粒尺寸分别为20.9 μm和9.6 μm。H65/IF界面无元素扩散,结合方式为机械结合。(2)标距宽度为9 mm时,H65/IF/H65层状复合材料的总延伸率、屈服强度和抗拉强度分别为37.5 %、218.9 MPa 和302.0 MPa。随着标距宽度不断下降,材料的总延伸率呈现单调下降趋势。当标距宽度为1 mm时,总延伸率、屈服强度和抗拉强度分别为20.2 %、209.8 MPa 和287.5 MPa。层状复合材料抵抗塑性失稳的能力随着试样标距宽度的减小而降低,相较于强度,H65/IF/H65层状复合材料的塑性变形能力更易受到标距宽度的影响。(3)随着标距宽度由9 mm逐渐降低至1 mm,H65/IF/H65层状复合材料标距段内的形变不均匀程度愈发明显,其拉伸至颈缩点时的样品表面粗糙度Ra也由1.84 μm下降至1.45 μm。当标距宽度为9 mm时,H65/IF/H65层状复合材料的剪切应力交互作用更强,裂纹于试样内部沿剪切带萌生并在数对交错的剪切带结构影响下形成台阶状扩展。当标距宽度为1 mm时,剪切应力交互作用被抑制,数对交错的剪切带结构合并为单道剪切带,裂纹于剪切带一侧萌生并沿单道剪切带进行无台阶偏转的快速扩展。(4)H65层在断口附近区域发生剥离和脱落。随着标距宽度由9 mm逐渐降低至1 mm,断口韧窝带宽度以及韧窝带内部韧窝的尺寸与数量均显著减小,并在断口局部区域形成了较为尖锐的劈尖。
结论随着标距宽度由9 mm 逐渐降低至1 mm,H65/IF/H65层状复合材料的力学性能呈现出显著的尺寸效应。该尺寸效应主要源于剪切应力的交互作用随着标距宽度的降低而被抑制。当标距宽度较小时,裂纹更易沿单道剪切带快速扩展而导致塑性下降。
-
H65黄铜-IF钢-H65黄铜层状金属复合材料不仅具有外层铜材质良好的导电、导热和耐蚀性能,还可兼具芯部IF钢优异的强度、塑性及成形性能,可以广泛应用于新能源、通讯、电力电气等诸多领域。然而,随着电子元器件逐渐向微型化的方向发展,H65-IF-H65层状复合金属材料的力学性能随着成型工件尺寸的减小而表现出愈发显著的尺寸效应。
本文通过对H65-IF-H65层状复合金属材料的显微组织进行分析,并对标距宽度分别为9、5、4、3、2和1 mm 的H65-IF-H65层状复合金属材料进行力学性能、应变分布、裂纹扩展行为和断口形貌等进行分析。结果显示,随着标距宽度由9 mm 逐渐降低至1 mm,材料的抗拉强度、屈服强度基本保持不变,但总延伸率、均匀延伸率和不均匀延伸率分别由30.3%、23.4% 和6.9%下降至20.3%、18.8%和1.5%,加工硬化能力迅速减弱。与此同时,材料的应变集中程度逐渐加剧,拉伸断口上的韧窝带宽度变小且带内的韧窝数量和尺寸也明显减小,呈现出显著的尺寸效应。H65-IF-H65层状复合材料的尺寸效应主要源于剪切应力的交互作用随着标距宽度的降低而被抑制,裂纹更易沿单道剪切带内快速扩展而导致塑性下降。
(a)不同标距宽度H65-IF-H65层状复合材料工程应力-应变曲线,(b)标距宽度1mm、3mm和9mm试样的真应力、应变硬化率Vs真应变曲线