富脂区对碳纤维增强热塑性树脂基复合材料层间剪切应力传递影响的力学分析

Mechanical analysis of the influence of resin-rich zones on interlaminar shear stress transfer in carbon fiber reinforced thermoplastic composites

  • 摘要: 精准分析复合材料承载时的层间应力状态,是实现其结构优化设计的重要基础。本文针对碳纤维增强热塑性树脂基复合材料,考虑其层间存在富脂区的结构特点,建立了层间剪切应力的传递模型。该模型通过“先整体后微元”的分析方法,详细分析了含富脂区的层叠结构中外载到内力的传递过程。实验验证结果表明,相比于不考虑富脂区影响的经典层合板理论模型,本模型的计算精度明显更高。基于本模型,从三点弯工况下的失效载荷、弯/剪失效机制转变的临界跨距这两个方面讨论了层叠结构单层厚度对抗弯性能的影响。结果表明,减小层叠结构中的增强区厚度一方面可抑制截面弯曲正应力的传递,从而降低层间剪切应力,有利于提高层叠结构的失效载荷;另一方面,还可在层合板厚度相同条件下大幅提升正应力与层间剪切应力之比,由此使层叠结构的失效更倾向于弯曲失效。因此,推荐采用小厚度的预浸料制备热塑性复合材料,以全面提升其抗弯性能。本文的研究结果不仅对复合材料力学理论的发展产生了推动作用,还为强化热塑性复合材料的层间剪切强度提供了基本思路。

     

    Abstract: An accurate analysis of the interlaminar stress state in composite materials is crucial for structural optimization. This paper focuses on thermoplastic resin-based composites, specifically examining the resin-rich region between layers, and presents a model for the transmission of interlaminar shear stress. Adopting an “overall first, then microelement” analysis approach, the model explores how external loads are transferred into internal forces within a laminated structure containing a resin-rich region. Experimental results demonstrate that, compared to the classical laminate theory model that neglects the resin-rich region, this model offers significantly improved accuracy. Using this model, the paper investigates the effect of single-ply thickness on the bending performance of laminated structures, focusing on failure load and the critical span at which bending/shear failure mechanisms shift. The findings indicate that reducing ply thickness helps mitigate bending normal stress transmission, lower interlaminar shear stress, and enhance failure load; on the other hand, at the same laminate thickness, it significantly increases the ratio of normal stress to interlaminar shear stress, making bending failure more likely. Thus, using thin prepreg for the fabrication of thermoplastic composites is recommended to enhance their bending performance. This research contributes to the advancement of composite material mechanics and offers valuable insights for improving the interlaminar shear strength of thermoplastic composites.

     

/

返回文章
返回