关于横观各向同性体在其各向同性面内弹性问题的一个常数

ON A CONSTANT IN ELASTOSTATIC PROBLEMS FOR A TRANSVERSELY ISOTROPIC BODY IN THE PLANE OF ISOTROPY

  • 摘要: 研究了在平面应力和平面应变情况下, 横观各向同性材料在其各向同性面内的应力2应变关系以及用位移表达的平衡方程可以被表示成与各向同性材料完全相同的形式。这种等同关系是通过引入一个与横观各向同性材料的泊松比有关的常数得到的。该常数的引入消除了已发表的文献中求解横观各向同性材料平面问题时出现的矛盾。这个常数的引入也便于正确计算单向纤维增强复合材料的横向切变模量。

     

    Abstract: In this paper, it is pointed out that under both plane stress and plane strain deformation conditions, the constitutive and equilibrium equations in the plane of isotropy of a transversely isotropic body can be expressed in a form identical to that for an isotropic body. This equivalence is implemented through the introduction of a mixed constant containing the Poisson ratios of the transversely isotropic medium. The introduction of this constant eliminates an inconsistency that appeared in the literature on the solution of transversely isotropic bodies. The use of this constant also facilitates consideration of transverse isotropy of the constituents of unidirectional fibre reinforced composite materials.

     

/

返回文章
返回