粘弹性基体中环绕纤维的环形裂纹的&Iota|型和ΙΙ&Iota|型应力强度因子

MODE Ⅰ AND Ⅲ STRESS INTENSITY FACTORS FOR AN ANNULAR CRACK IN A VISCOELASTIC MATRIX SURROUNDING AN ELASTIC FIBER

  • 摘要: 分析了粘弹性基体中环绕纤维的环形裂纹的é 型和? 型应力强度因子及其时间相关性。根据文献 1 、文献2 中的弹性解, 求出了粘弹性基体中环绕纤维的环形裂纹的é 型和? 型应力强度因子在Laplace 变换域内的解。对其进行Laplace 数值反演后, 得到了相应的é 型和? 型应力强度因子在时间域内的变化曲线。结果表明, 给定长度的环形裂纹在尚未接触界面时, 其两端正则化的é 型和? 型应力强度因子均随时间增大而减小。

     

    Abstract: The axisymmetric problem of an infinite long fiber perfectly bonded to a viscoelastic matrix which contains an annular crack surrounding the fiber is investigated for the case of tension or torsion loading. After obtaining the Laplace transformed solution from the elastic analysis, a Legendre polynomial method is used to invert the Laplace transform numerically. The time dependent stress intensity factors at the crack tips are presented. The results show that when the annular crack is away from the interface, the normalized stress intensity factors at the crack tips decrease with increasing time.

     

/

返回文章
返回